
Ch.1 Programming concept

What you will learn in this chapter

•Programming Concepts
•Programming language
•Algorithm
•Scratch

Before writing
a program,
let's review

some
important
concepts.

What is a program ?

• A computer is a general-purpose machine -> You can do many things
using a computer

• What makes computers general-purpose is the concept of programs

Definition of computer

• A computer is not simply a machine that computes

• A computer in the modern sense can be said to be a machine that
processes data according to a program

What's inside the program ?

• A program can be thought of as a work instruction for a specific task.

• To perform a task, you need to list instructions. A program contains instructions.

Example of a program

• three numbers and calculates their average. The program
can be made up of the following instructions.
These instructions are called commands.

Program == Work Instructions

• Program : A document that tells the computer what to do.

History of the program

• The first programmable machine : the Analytical Engine

• Created by : Charles Babbage

• Thousands of gears , wheels , axles , levers, etc. are powered
by steam.

It never actually got made !

difference organ

Babbage's Analytical Engine

• Babbage's Analytical Engine was designed to be steam-power
ed and comprised of thousands of gears, wheels, axles, and
levers.

* Central processing unit (responsible for
calculations , called mill)
* Memory (where numbers are temporarily
stored in intermediate stages , called store)
* Output device (dial that indicates the
output number)
* Input device (punch card)

Programming early computers

• the early computer, ENIAC, were stored in switches, and each
time the program was changed, all the switches had to be
reconnected from scratch.

Von-neumann architecture

• Programs are stored in main memory -> can be easily changed

• Sequentially retrieves and executes commands from a program
stored in main memory.

The first programmer

• The first person to create the program was Ada Lovelace

• Ada Great writer Byron's biological daughter

• Babbage's Analytical Engine and developed a program for it.

• Invented core computer programming fundamentals such as
subroutines, loops, and jumps.

Enchantress of
Numbers

http://en.wikipedia.org/wiki/File:Ada_Lovelace.jpg

Ada's program

1842 , Ada worked with Italian
engineer Luigi Menabrea on
the Analytical Engine. In the
process of translating the
article, I added a note in the
margin . Ada's note is three
times longer than the article
itself , and explains in detail
how to compute Bernoulli
numbers using an analysis
engine . This note is
considered by many to be the
first computer program in the
early history of computing ,
that is, an algorithm designed
for a machine to perform .

How detailed should the work instructions be?

• Because they lack common sense or intelligence, they must be
given very detailed and specific instructions on what to do.

Advantages of Computers

• He does his work very quickly and accurately, and he never
complains no matter how many times he is asked to do it.

What you will learn in this chapter

•Programming Concepts
•Programming language
•Algorithm
•Scratch

Language that computers understand

• Computers understand only one language : machine language,
which consists of 0s and 1s, such as “001101110001010...”

• Computers express everything as 0 and 1, and work by turning
internal switch circuits ON/OFF based on 0 and 1.

machine language

• It is a binary number such as “ 001101110001010 ...” , which is composed of 0 and 1

http://paperclip.rcs.ac.uk/index.php/File:125.jpg

Machine language

• Example of machine language

http://www.google.co.kr/url?sa=i&rct=j&q=machine+language&source=images&cd=&cad=rja&docid=ySXmv9CIlABqEM&tbnid=X7cN2uPsxYJ1AM:&ved=0CAUQjRw&url=http://www.uigarden.net/english/the-application-of-model-matching-principle-in-user-interface-design-part-2&ei=nRAjUcKHOui0igLSh4HIBQ&bvm=bv.42661473,d.cGE&psig=AFQjCNHO6MKdocFOCt36g-MzuNTo3rpF7w&ust=1361338899519882

Programming language

• Although machine language can be used, it is very inconvenient
because programs must be written in binary.

• Programming languages are somewhere between natural language
and machine language.

• A compiler translates a programming language into machine
language.

Machine
language

Programming
language

Natural
language

1010101000010
1010101010100
1010101000010
1010101010100
1010101000010
1010101010100
1010101000010
1010101010100

int
main(void){

…
}

“hello world!”

compiler

• A compiler can be considered an interpreter between humans
and computers .

Classification of programming languages

• machine language

• assembly language

• high-level

Machine language

• A binary representation of the instructions of a specific computer

• Consists of 0 and 1

• Hardware dependent

00001111 10111111 01000101
11111000 00001111 10111111
01001101 11111000 00000011
10100001 01100110 10001001
01000101 11111010

Assembler

• CPU commands are expressed in symbols that are abbreviations
of English letters rather than binary numbers.

• It is possible to write programs at a higher level than machine

language between symbols and CPU commands

• Assembler : A program that converts symbols into binary.

MOV AX, MIDSCORE

MOV CX, FINALSCORE

ADD AX, CX

MOV TOTALSCORE, AX

00001111 10111111 01000101
11111000 00001111 10111111
01001101 11111000 00000011
10100001 01100110 10001001
01000101 11111010

Assembler

High-level language

• A language that allows you to write programs independently ,
regardless of the architecture or processor of a specific comp
uter.

• C, C++, JAVA, FORTRAN, PASCAL

• Compiler : A program that converts high-level language state
ments into machine language.

TotalScore = MidScore + FinalScore

00001111 10111111 01000101
11111000 00001111 10111111
01001101 11111000 00000011
10100001 01100110
10001001 01000101 11111010

compiler

Low-level and high-level languages

• The reason why they are called high-level languages is because their
structure is closer to human language than to machine language.
In contrast, assembly language and the like are classified as low-level
languages because they are closer to machine language.

Types of high-level languages

Introduction of C Language

• Developed by Dennis Ritchie of AT&T in the early 1970s.

• Language B -> Language C

• Created for the development of UNIX operating systems.

• Starting from scratch with professional language

C language

• K & RC
• 1978 “ C Programming Language ” Book publication
• Informal specification role

• ANSI C
• In 1983 , the American National Standards Institute (ANSI) published a s

tandard by a committee called X3J11.

• C99
• Standardized by ISO in 1999
• Add features used in C++
• Supported by a growing number of compilers

• C11
• C language standard published by ISO in December 2011 .

• C17, C18
• C17 , published as ISO/IEC 9899:2018 in June 2018 , is the current stand

ard . It adds no new language features and only fixes technical defects f
rom the C11 version .

Features of the C language

• It's concise

• It is efficient

• The C language allows for both low-level programming that

directly controls hardware , as well as high-level programming.

• C language is highly portable

• C language will help you understand how computer hardware
works

Features of the C language

Disadvantages of the C language

• It is difficult for beginners to learn

• There are many cases where pointers, which are essential elements for controlling
hardware, are misused

C language still be used in the future ?

• C language is a common part of C++ and JAVA

• Programs where execution speed is important are implemented in
the C language

• C language is widely used in

Embedded System : An embedded
system is a special purpose
system in which a computer is
embedded in a device , such as
an MP3 player or cell phone .

Uses of the C Language

What you will learn in this chapter

•Understanding the
program
•Programming language
•Algorithm
•Scratch

Before writing
a program,
let's review

some
important
concepts .

Algorithm

Q) Can anyone cook if they just
learn how to use an oven and have
the ingredients ?

A) You need to know how to cook

computer

Algorithm

What is an algorithm?

• Algorithm : A description of the step-by-step procedure that a computer must
perform to solve a problem

• (Example) Let's consider the problem of finding the phone number of a speci
fic person in a phone book

Algorithm for making bread

① Prepare an empty bowl .

② Add yeast to flour and milk and stir .

③ Add butter , sugar , and eggs and mix .

④ Leave in a warm place to ferment.

⑤ Bake in an oven at

Algorithm to find the sum of numbers
from 1 to 10

① Add the numbers from 1 to 10 one by one .

1 + 2 + 3 + ... + 10 = 55

② Group the numbers so that the sum of the two numbers is 10,
multiply the number of groups by 10, and add the remaining number 5

③ You can also calculate it using the formula.

10*(1+10)/2=55

The Art of Algorithms

• Natural language (natural language)

• Flowchart

• pseudo-code

Example of an algorithm

• Algorithm for finding roots of quadratic equations

The Art of Algorithms

• Flow chart : A method of graphically representing the logical
sequence or sequence of operations in a program.

Start/End of performance

Treatment

Judgment

Input/Output

Example of an algorithm

• Let's show the algorithm for logging into the school homepa
ge in a flowchart .

Pseudocode

• Pseudo code is a code that is more systematic than natural
language and less rigorous than a programming language and
is mainly used to express algorithms.

• For example, the algorithm that takes the grades of 10 students and calculates the
average can be expressed in pseudocode as follows:

The importance of algorithms

• If we give computers bad algorithms, we are bound to get
bad results

• Our smartphones, home appliances , and cars have caused so far

• If there are no errors in the algorithm, the computer program will also
operate without logical errors

How to create an algorithm

1. A problem all at once, break it down into smaller problems

2. Keep breaking the problem down until it is small enough

① Clean the room

② Clean the living room

③ Clean the kitchen

① Ventilat the air

② Organize your things

③ Turn on the vacuum cleaner

④ Mopping

Ventilat Organize Vacuum Mopping

Lab: Algorithm for handling printer failures

Lab: Algorithm for determining pass or fail

Q & A

