
Ch.11 Pointers

What you will learn in this chapter

•What is a pointer ?
•Address of variable
•Declaration of a pointer
• Indirect reference operator
•Pointer arithmetic
•Pointers and Arrays
•Pointers and functions

In this chapter
The basics of

pointers
Learn

knowledge .

What is a pointer ?

• Pointer : A variable that has an address

Where is it stored in the variable ?

• Variables are stored in memory .

• Memory is accessed in bytes.
• The address of the first byte is 0, the address of the second byte is 1, …

Variables and Memory

• The memory space occupied varies depending on the size of
the variable.

• char type variable : 1 byte, int type variable : 4 bytes, …

int main(void)

{

int i = 10;

char c = 69;

float f = 12.3;

return 0;

}

Codespaces

Address of variable

• Operator to calculate the address of a variable : &

• Address of variable i : &i

Variable value

Address of variable

int main(void)

{

int i = 10;

char c = 69;

float f = 12.3;

printf ("Address of i : %p\n" , &i); // Print address of

printf ("Address of c : %p\n" , &c); // Print address of

printf ("Address of f : %p\n" , &f); // Print address of

return 0;

}

i 's address : 0000003D69DDF974

Address of c : 0000003D69DDF994

Address of f : 0000003D69DDF9B8

The program The address
will be different each time

you run it .

Codespaces

caution

• Be careful when declaring multiple pointer variables on one line.
Declaring them as follows is incorrect :
• int *p1, p2, p3; // (×) p2 and p3 become integer variables .

• To declare correctly, you must do the following :
• int *p1, *p2, *p3; // (○) p2 and p3 are pointer variables of integer type.

Declaration of a pointer

• Pointer : A variable that holds the address of a variable.

Pointer's Initialization : Initialize to absolute
address

• Possible on Aduino or embedded system

• Not working on Windows

- For security and stability, absolute address pointer initialization

is not allowed.
→ Only addresses allocated by OS or memory addresses normally
acquired through malloc, new, etc.

Assign the variables to pointers

int i = 10; // declare of integer variable i

int * p; // declare of pointer variable p

p = & i ; // assign the address of variable i to pointer p

Declaration of various pointers

char c = 'A’; // character type Variable c

float f = 36.5; // Real number variable f

double d = 3.141592; // Real number Variable d

char *pc = &c; // characters indicated pointer pc

float * pf = &f; // Real number indicated Pointer pf

Double * pd = &d; // Real number indicated Pointer pd

Same

Size

Example

#include < stdio.h >

int main(void)

{

int i = 10;

double f = 12.3;

int * pi = NULL ;

double * pf = NULL ;

pi = &i ;

pf = &f;

printf("%p % p\n" , pi, &i);

printf("%p % p\n" , pf, &f);

return 0;

}

0000002AFF8FFB24 0000002AFF8FFB24

0000002AFF8FFB48 0000002AFF8FFB48

reference

• NULL is stdio.h It means address 0, a pointer constant defined
as follows in the header file .
• #define NULL ((void *)0)

• 0 is generally unusable (the CPU uses it for interrupts).
Therefore, if the value of a pointer variable is 0, we can assume
that
it is not pointing to anything .

NULL pointer Pointing to nothing

Indirect reference operator

• Indirect reference operator * : Operator that retrieves the value
pointed to by the pointer

int i = 10;

int * p;

p = &i ;

printf ("%d \n" , *p);

* Returns the value of variable pointed by the pointer

Interpretation of indirect reference operators

• Indirect reference operator : Reads a value based on the type
of the pointer at the specified location .

int *pi = (int *)10000;

char *pc = (char *)10000;

double *pd = (double *)10000;

*p, to read 4 bytes(int)

from the location pointed by p

& operator and * operator

• & operator : returns the address of a variable

• * Operator : Returns the contents of the location pointed by
the pointer .

Variable value ->

Variable name ->

Address ->

Variable

Pointer Example #1

#include < stdio.h >

int main(void)

{

int i = 3000;

int *p=NULL;

p = & i ;

printf("p = %p\n" , p);

printf("&i = %p\n\n" , &i);

printf (" i = %d\n" , i);

printf("*p = %d\n" , *p);

return 0;

}

30
00ip

p = 0000006DEA0FFBD4

& i = 0000006DEA0FFBD4

i = 3000

*p = 3000

Pointer Example #2

20
y

p
10

x

p = 0000007A8F3AF974

*p = 10

p = 0000007A8F3AF994

*p = 20

Practice

Codespaces

Pointer Example #3

#include < stdio.h >

int main(void)

{

int i =10;

int *p;

p = & i ;

printf (" i = %d\n" , i);

*p = 20;

printf (" i = %d\n" , i);

return 0;

}

p

10
i

Change the value of a variable
through a pointer.

i = 10

i = 20

Cautions when using pointers

• You should not use uninitialized pointers .

int main(void)

{

int *p; // pointer p is not initialization

*p = 100; // dangerous code

return 0;

}

Cautions when using pointers

• Pointers are both a strength and a weakness of the C language.

• Developers must use it responsibly .

• When using pointers, always remember the following quote from
the Spider-Man movie :

Cautions when using pointers

• If the pointer points to nothing, it is initialized to NULL .

int *p = NULL;

Cautions when using pointers

• The type of the pointer and the type of the variable must match.

#include < stdio.h >

int main(void)

{

int i ;

double * pd ;

pd = & i ; // error !

*pd = 36.5;

return 0;

}

Pointer arithmetic

• Possible operations : increment , decrement , addition , subtraction
operations

• In the case of an increment operation, the value being increased is
the size of the object pointed to by the pointer.

++value that increases after operation

Increment operation example
// Increment/decrement operation of pointer

#include < stdio.h >

int main(void)

{

char *pc;

int *pi;

double *pd;

pc = (char *)10000;

pi = (int *)10000;

pd = (double *)10000;

printf(" pc=%u, pc+1=%u, pc+2= %u\n" , pc, pc + 1, pc + 2);

printf(" pi=%u, pi+1=%u, pi+2= %u\n" , pi, pi + 1, pi + 2);

printf(" pd=%u, pd+1=%u, pd+2= %u\n" , pd, pd + 1, pd + 2);

return 0;

}
pc=10000, pc+1=10001, pc+2= 10002

pi=10000, pi+1=10004, pi+2= 10008

pd=10000, pd+1=10008, pd+2=10016

그림으로 설명
Next page

Increment and decrement operations
of pointers

Indirect reference operator and
increment/decrement operator

• *p++;
• Increments p after getting the value from the location pointed to by p.

• (*p)++;
• The value at the location pointed to by p It increases .

formula meaning

v = *p++ After assigning the value pointed to by p to v , increment p.

v = (*p)++ the value pointed to by p to v, increment the value pointed to.

v = *++p After incrementing p, assign the value pointed to by p to v.

v = ++*p p increment that value and assign it to v.

Indirect reference operator and
increment/decrement operator

// Increment/decrement operation of pointer

#include < stdio.h >

int main(void)

{

int i = 10;

int *pi = & i ;

printf (" i = %d, pi = %p\n" , i , pi);

(*pi)++;

printf (" i = %d, pi = %p\n" , i , pi);

*pi++;

printf (" i = %d, pi = %p\n" , i , pi);

return 0;

}

Increments the value at the location pointed to pi.

After getting the value from the location

pointed to by pi, increment pi.

i = 10, pi = 000000FFEBCFF974

i = 11, pi = 000000FFEBCFF974

i = 11, pi = 000000FFEBCFF978

Codespaces

Type conversion of pointers

• C language , you can explicitly change the type of a pointer
when absolutely necessary.

double * pd = &f;

int * pi;

pi = (int *)pd;

Example

#include < stdio.h >

int main(void)

{

int data = 0x0A0B0C0D;

char *pc;

int i ;

pc = (char *)&data;

for (i = 0; i < 4; i++) {

printf ("*(pc + %d) = %02X \n" , i , *(pc + i));

}

return 0;

}

*(pc + 0) = 0D

*(pc + 1) = 0C

*(pc + 2) = 0B

*(pc + 3) = 0A

Supplementary?

Codespaces

reference

• You can feel the danger of pointers a little bit in the
increment and decrement operations of pointers . We can
increment and decrement pointers as we please, but the
incremented
pointer may point to the wrong location.

• It may refer to other people's data, not data we created,
or it may refer to a data area used by the operating system.

• In this case, writing or reading a value using a pointer can
cause a serious error.

Check points

1. What operations can be applied to pointers ?

2. int pointer p points to address 80, what address does (p+1) point to ?

3. p is a pointer, what is the difference between *p++ and (*p)++ ?

4. If p is a pointer, what does * (p+3) mean ?

How to transfer acquisition

• Function How to pass arguments when calling

• Call by value (call) by value)
• Copy as a function It is delivered.

• Basic methods in C.

• Call by reference
• The original is passed to the function.

• In C, this can be emulated using pointers.

swap() function #1 (call by value)

#include < stdio.h >

void swap(int x, int y);

int main(void)

{

int a = 100, b = 200;

printf(“a=%db=%d\n”,a, b);

swap(a, b);

printf(“a=%db=%d\n”,a, b);

return 0;

}

void swap(int x, int y)

{

int tmp ;

printf(“x=%dy=%d\n”,x, y);

tmp = x;

x = y;

y = tmp ;

printf(“x=%dy=%d\n”,x, y);

}

a=100 b=200

x=100 y=200

x=200 y=100

a=100 b=200

Call by value

swap() function #2 (call by reference)

Practice

a=100 b=200

a=200 b=100

Call by reference

scanf () function

• Receives the address of a variable to store a value.

Note : How to prevent a function from
changing a value through a pointer ?

• When declaring a function parameter, you can do so by adding
const in front.
Adding const in front means that the content pointed to pointer
is a constant that cannot be changed.

void sub(const int *p)

{

*p = 0; // error !!

}

Example

• If a function needs to return more than one value, one way to
do this is to use pointers . Let's write a function that returns
both the slope and the y- intercept of a line .

The slope is 1.000000, and the y- intercept is 0.000000

Return more than two results
#include < stdio.h >

// Slope and Calculate the y-intercept

int get_line_parameter (int x1, int y1, int x2, int y2, float *slope, float * yintercept)

{

if (x1 == x2)

return -1;

else {

*slope = (float)(y2 - y1)/(float)(x2 - x1);

* yintercept = y1 - (*slope)*x1;

return 0;

}

}

int main(void)

{

float s, y;

if (get_line_parameter (3,3,6,6,&s,&y) == -1)

printf (" Error \n");

else

printf (" slope is %f, y-intercept is %f\n" , s, y);

return 0;

}

slope and Y- intercept
as arguments

The slope is 1.000000, and the

y- intercept is 0.000000

Cautions when returning a pointer

• The address of the variable that remains even after the function
ends must be returned .

• If you return the address of a local variable, it will disappear
when the function ends, so it is an error.

int *add(int x, int y)

{

int result;

result = x + y;

return &result;

}

Local variables disappear when
the function call ends, so you
should not return the address

of a local variable.

Pointers and Arrays

• Arrays and pointers have a very close relationship .

• The array name is actually a pointer .

• Pointers can be used like arrays .

Array Pointer

[0] [1]

a

[2] [3] [4] [5] [6] [7] [8]

p

Array

Pointer

Pointers and Arrays
// Pointer and Array of relationship

#include < stdio.h >

int main(void)

{

int a[] = { 10, 20, 30, 40, 50 };

printf ("&a[0] = %u\n" , &a[0]);

printf ("&a[1] = %u\n" , &a[1]);

printf ("&a[2] = %u\n" , &a[2]);

printf ("a = %u\n" , a);

return 0;

} &a[0] = 1245008

&a[1] = 1245012

&a[2] = 1245016

a = 1245008

Example

a = 1245008

a + 1 = 1245012

*a = 10

*(a+1) = 20

Practice

Pointers and Arrays

• Pointers can be used like arrays .

• Index notation can be used with pointers .

Using pointers like arrays

#include < stdio.h >

int main(void)

{

int a[] = { 10, 20, 30, 40, 50 };

int *p;

p = a;

printf ("a[0]=%da[1]=%da[2]=%d \n" , a[0], a[1], a[2]);

printf ("p[0]=%dp[1]=%dp[2]=%d \n\n" , p[0], p[1], p[2]);

p[0] = 60;

p[1] = 70;

p[2] = 80;

printf ("a[0]=%da[1]=%da[2]=%d \n" , a[0], a[1], a[2]);

printf ("p[0]=%dp[1]=%dp[2]=%d \n" , p[0], p[1], p[2]);

return 0;

}

You can see that arrays
are ultimately implemented
as pointers .

Array elements can be
changed through pointers.

a[0]=10 a[1]=20 a[2]=30

p[0]=10 p[1]=20 p[2]=30

a[0]=60 a[1]=70 a[2]=80

p[0]=60 p[1]=70 p[2]=80

A pointer can also be used as an array
name.

Array parameters

• General parameters vs Array parameters

• Why? -> Copying an array to a function is time-consuming,
so only pass the address of the array .

// Assign parameters variable x at

memory place

void sub(int x)

{

...

}

// b does not have memory allocated to it

void sub(int b[])

{

...

}

Array parameters

• Array parameters can be thought of as pointers .

// Relationship between pointers and functions

#include < stdio.h >

void sub(int b [], int n);

int main(void)

{

int a[3] = { 1,2,3 };

printf("%d %d %d\n" , a[0], a[1], a[2]);

sub(a, 3);

printf("%d %d %d\n" , a[0], a[1], a[2]);

return 0;

}

void sub(int b [], int n)

{

b [0] = 4;

b [1] = 5;

b [2] = 6;

}
1 2 3

4 5 6

The following two methods are completely
equivalent :

Advantages of using pointers

• Pointers are faster than index notation .
• Why?: There is no need to convert index to address .

int get_sum1(int a[], int n)

{

int i ;

int sum = 0;

for (i = 0; i < n; i ++)

sum += a[i];

return sum;

}

int get_sum2(int a[], int n)

{

int i , sum =0 ;

int *p;

p = a;

for (i = 0; i < n; i ++)

sum += *p++;

return sum;

}

Using index
notation

Using
pointers

When the compiler
optimizes, the
performance

becomes almost
similar .

Advantages of using pointers

• You can create advanced data structures such as linked lists and
binary trees .

• Call by reference
• You can change the value of a variable outside the function by using

a pointer as a parameter .

Advantages of using pointers

• Memory mapping hardware
• Memory-mapped hardware refers to hardware devices that can be

accessed like memory .

• Dynamic memory allocation
• Covered in Chapter 17 .

• To use dynamic memory, you must have a pointer .

volatile int * hw_address = (volatile int *)0x7FFF;

* hw_address = 0x0001; // Write value 0x0001 to the device at address 0x7FFF .

Q & A

