Ch.13 Structure

What vou will learn in this chapter

Structures are an

important tool for

grouping different
data together .

» Structure concept, agfinition,
and initialization metho
* Relationship between
structures and pointers
* Unions and typedefs

Classification of data types

C data type
Basic data type derived data type user-defined data type
int
long Array
float pointer typedef
double struct enum
Char union

The need for structures

- How to gather data about students into one place ?

int humber;
char name[10];
double grade;

Student number: 20251234 (Number)
Name: “first last” (String)
Grade: 4.3 (Real number)

It can be expressed

as individual variables
like this, but can it be
grouped ?

|

The need for structures

struct student {
int number; e
char name[10]; //name
double grade; // unit

s

ber

student

number

name

grade

COEEAEE

Structures allow you
to group
variables together.

Arrays and Structures

| 10][20](30|

struct

Array

Group variables of the same type Group variables of different types

Check points

1. Discuss the difference between structures and arrays .
2. Struct example
- Student information
. Member functions
- Car
. Member functions

Structure definition

Structure definition o
_ Keyword used when defining a structure

b | r__./"‘/'/'/___,__-_----/'“' Name of a structure
struct studeht { I ——
int number; | e
char name[10];| //name
double grade; /1 credits
}5e There must be a semicolon at the end

struct student p1;
This line is a declaration and definition of a variable of type struct student.

e Itdeclares a variable p1.
e Ifstruct student has already been defined, then this line also allocates memory for p1.

e Therefore, itis a definition of a variable, not just a declaration of the structure type.

Structure declaration

« A structure definition is not a variable declaration.

Defining a structure is
like a mold for making waffles.

To actually make waffles you need
to declare a structure variable.

Str)u‘ctture Structure variable
ex;1n ex) int a
struct Person {
int age;
h // structure definition

struct Person p1l; // variable declaration + memory allocation (definition)

Declaration & Definition

Code Declaration? Definition? Memory Allocated? Notes
int a; Declaration + Definition
extern int a; X) 4 Declaration only (defined
elsewhere)
int a = 5; Declaration + Definition +
Init
Code Type Memory Allocated? Notes

struct Person; Type Declaration X Forward declaration (no size
info)

struct Person { int age; Type Definition X Defines structure layout

}

struct Person p1; Variable Declaration + Declares and allocates p1

Definition

Example of a structure definition

/1 Screen coordinates made up of x // date

struct point { struct date {
int x; // x coordinate int month;
inty; // y coordinate int day;

% int year;

5

// Complex humber // square

struct complex { struct rect angle {
double real; // real part intx,vy;
double imag ; // imaginary part int width;

int height ;

5

5

Declaring a structure variable

* Defining a structure and declaring a structure variable are different.

——————
-
-

e ————

-
—— -
‘‘‘‘‘‘‘‘

char name[10];
double grade;

% Definition of Struct

I
int main (void){ -
struct studen{‘ s1; % Declaration of Struct
3
s1
—
number nama[1P] grade

Initializing a structure

* Initial values are listed using curly brackets .

struct student {
int number;
char name[10];
double grade;
5
struct student s1 = { 24, "Kim" , 4.3 }; // s1is NOT a pointer,
// it’s variable of derived data type

S1

,_-—/'/\-_
- ™

24 {fr\ d IS (43)

number name[1D] grade

Structure member reference

Accessing structure members

struct variable structure member

sl.gra'({= 3:83

. symbol is an operator
used when referencing
members in a structure .

Example #1

Codespace

#include <stdio.h>

_#include <string.h>

struct student {
int number;
char name[100];
double grade ;

i

int main(void)

Structure
declaration

{ / Declaring a
struct student s; Strgcture
variable Structure
s.number = 20230001; —Member
strcpy (s.name, " Hong Gil-dong "); EIEIRNES
s.grade = 4.3 ;
printf ("Student number : %d\n" , s.number);
printf ("Name : %s\n" , s.name);
printf (“Grade : % .2f \n", s.grade) ;
return 0; Student number : 20230001
} Name : Hong Gil-dong

GPA 1 4.30

Example #2

struct student {
int number;
char name[10];

double grade;
1 Structure

’ declaration

Codespace

Declaring a structure
int main(void) variable

{ L

struct student s;

Passing the address of

) a structure member
printf (" Student number Enter : "); —

scanf ("%d" , & s.number);

printf (" name Enter : ");
scanf ("%s" , s.name);

printf (" Credit Enter (error): ");
scanf ("%lf" , & s.grade);

. . Enter your student number : 20230001
printf (“\ nStudent number : %d\n" , s.number); |Vt I oAt

printf (" Name : %s\n" , s.name); Enter your grade (error): 4.3
printf (“ Grade : % .2f \n" , s.grade); :
return 0; Student number : 20230001

Name : Hong Gil-dong
3 GPA : 4.30

New initialization method

#include < stdio.h >
// Represents a point in two-dimensional space as a structure .
struct point {
int x;
int y;
5

int main(void)
{
struct point p=1{1, 2}; /I D
struct pointq={.y=2, x=1}; //©®

struct point r = p; A®),
r = (struct point) {1, 2 }; Il @

printf("p=(%d, %d)\n" , p.x, p.y);
printf("q=(%d, %d) \n", q.x, q.y);
printf("r=(%d, %d)\n" , r.x, r.y);
return O;

Lab: Representing points in two-
dimensional space as structures

 Get the coordinates of two points from the user and calculate
the distance between the two points. The coordinates of the
points are expressed as a structure .

Enter the coordinates of the point (xy): 10 10
Enter the coordinates of the point (xy): 20 20

The distance is 14. 14271536 .

Source code

#include < stdio.h >
#include < math.h >
struct point {

int x;
inty;
I
int main(void)
{

struct point p1, p2;
int xdiff , ydiff ;
double dist ;

printf (" dot Coordinates Enter (x y): ");
scanf ("%d %d" , &p1.x, &p1.y);

printf (* dot Coordinates Enter (x y): ");
scanf ("%d %d" , &p2.x, &p2.y);

pl (X,y)

P2 (X,y)

Source code

xdiff = p1.x - p2.x;
ydiff = p1.y - p2.y;

dist = sqrt((double)(xdiff * xdiff + ydiff * ydiff));
printf (" The distance is % f .\n" , dist);
return 0;

Enter the coordinates of the point (x y): 10 10
Enter the coordinates of the point (x y): 20 20

The distance is 14. 1427156 .

Check points

1. Each variable declared within a structure is called
2. The keyword used to declare a structure is

3. Why are tags needed for structures , and what is the difference
between using tags and not using them ?

4. Are variables created just by declaring a structure ?
5. What is the operator for referencing members of a structure ?

A structure that has structures as members.

struct date { struct student { // Structure declaration
int year; int number;
int month; char name[10];
int day; struct date dob ; // structure within structure
% double grade;
5

struct student s1; // Declare structure variable

s1.dob.year = 1983; // Member reference
s1.dob.month = 03;
s1.dob.day = 29;

Lab: Representing a rectangle as a
point structure

* the point structure from the previous example to represent
the coordinates of the vertices .

Enter the coordinates in the upper left corner - 10 10
Enter the coordinates in the upper right corner © 20 20

The area is 100 and the perimeter is 40 .

Exa m p I e Codespace

#include < stdio.h >

. 1(x.y)
struct point { P

int x;
inty;
3

struct rect {
struct point p1;
struct point p2;

p2(x,y)

5

int main(void)

{

struct rect r;
int w, h, area, peri;

Example

printf("Enter the coordinates of the upper left corner: ");
scanf("%d %d" , &r.p1.x, &r.p1.y);

printf("Enter the coordinates of the upper right corner: ");
scanf("%d %d" , &r.p2.x, &r.p2.y);

p(x.y)

area =Ww * h;
peri=2*w+2*h;
printf("Area is %d and perimeter is %d.\n" , area, peri);

p2(x.y)

return O;

Enter the coordinates in the upper left corner 1 1
Enter the coordinates in the upper right corner - 6 6

The area is 25 and the perimeter is 20 .

Assignment and comparison of structure
variables

 Assignment of variables of the same structure is possible,
but comparison is not possible .

__—good way _____—You can do this
e - p2.x"= pl.x; B
P2 =PL ot pointer, - & p2.y = pl.y; & &
It's a variable of derived data type
©c ©
T —— compilation error e — right Way [_/ e
if(p1"== p2) if((pl.x == p2.x) && (pl.y == p2.y))

printf("p1 and p2 are equal.") printf("p1 and p2 are equal.")

{ {

Example

 Assignment of variables of the same structure is possible, but
comparison is not possible .

struct point {
int x;
inty;

5

int main(void)
{
struct point p1 = {10, 203};
struct point p2 = {30, 403;

p2 = p1; // Substitution possible

if (p1 ==p2) // Compare -> Compile error !!
printf (" p1 and p2 It's the same .")

if ((p1.x ==p2.x) && (p1.y == p2.y)) // Correct comparison
printf (" p1 and p2 It's the same .")

Check points

1. What operations are allowed between variables of a structure ?

2. What is the difference between structure tags and structure variables ?
3. Can a structure be inserted as a structure member ?

4. Can a structure have an array as a member ?

Array of structures

* A collection of multiple structures

o5 Dl T (Go2) |

number name[1p] grade
24 K 1 [im]) \HQI\\ (4.3)
number namd[1p] grade

F& 25 NTU@L\\“R\'\ (29)

number namd/1D] grade

Array of structures

struct student {
int number;
char name[20];
double grade;

5

int main(void)

{

struct student list[100]; // Declare an array of structures

list[2].number = 24;
strcpy (list[2].name, " Hong Gil-dong ");
list[2].grade = 4.3;

Array of structures initialization

struct student list[3] = {
{1, "Park", 3.42 },
{2,"Kim", 4.31},
{3, "Lee”, 2.98 }

5

Calculate the number of elements in
an array of structures

* To automatically find the number of elements in an array of
structure,Divide the total number of bytes in the entire array by the
number of bytes in each element .

* n = sizeof (list)/ sizeof (list[0]);

* Or
* n = sizeof (list)/ sizeof (struct student);

This is only
possible within
the same
function .

#include <stdio.h>
#define SIZE 3

struct student {
int number;
char name[20];

double grade;
}’ Enter your student number :
_ _ _ 20190001
int main(void) Enter your name : Hong Gil-dong
{ Enter your grade (error): 4.3
struct student list[SIZE]; Enter your student number :
T 20190002
) Enter your name : Kim Yu-shin
Enter your grade (incorrect): 3.92
for (i=0;1i<SIZE; i ++) Enter your student number :
{ 20190003
printf (" Student number Enter : "); Emer your name : Lee Seong-gye
oy g .] nter your grade (incorrect): 2.87
SC"fmf ("/6d ’ &l]St[]]'mjmber)r Name : Hong Gil-dong , Grade :
printf (" name Enter : "); 4.300000
scanf ("%s" , list[i].name); Nan;e + Kim Yu-shin, Grade
printf (* Credit Enter (error): "); 8.920000 "
noy | £ e Name : Lee Seong—gye , Credit :
scanf ("%lf" , &list[i].grade); 5 870000
3

for (i=0;1 <SIZE; i ++)
printf (* Student number : %d, Name : %s, Grade : %f\n",
list[i].number, list[i].name, list[i].grade);
return O;

Check points

1. Define an array of structures that can store information about five products.
Products have number, name , and price as members .

Structures and Pointers

1. Pointer to a structure
2. A structure that has pointers as members.

/ Number

name

SP

grade

Pointer to a structure

struct student *p;

struct student s = { 24, “Kim”, 4.3 };
struct student *p;

p = &s;

printf("Student number =%d Name =%s Grade =%f \n" , s.number , s.name, s.grade);
printf("Student number =%d Name =%s Grade =%f \n" , (*p).number,(*p).name,(*p).grade);

24 i jm]) 4.3

number namd/1p] grade

-> Operator

 -> operator is used when referencing a structure member with
a structure pointer.

struct student *p;

struct student s = { 24, “Kim”, 4.3 };
struct student *p;

p = &s;

printf("Student number =%d Name =%s Key =%f \n", p->number, p->name, p->grade);

-> Operator

structure variable pointed to by p

G J
v

Member number of the structure variable pointed to by p

N)
\'4

Member number of the structure variable pointed to by p

Example

// Referencing a structure through a pointer
#include <stdio.h>

struct student { Student number = 1 Name = Hong Gil-dong Grade = 4.300000
int number; Student number = 1 Name = Hong Gil-dong Grade = 4.300000
char name[20]; Student number = 1 Name = Hong Gil-dong Grade = 4.300000

double grade;

b

int main(void)

{
struct student s = { 1, " Hong Gil-dong " , 4.3 };

struct student * p;

p = &s;

printf("Student number=%d Name=%s Grade=%f\n" , s.number , s.name, s.grade);
printf("Student number=%d Name=%s Grade=%f\n" , (*p).number, (*p).name, (*p).grade);

printf("Student number=%d Name =%s Grade=%f\n" , p->number, p->name, p->grade);

return 0;

Codespaces

A structure that has pointers as members.

struct date {
int month;
int day;
int year;

5

struct student {
int number;
char name[20];
double grade;
struct date *today ;

5

A structure that has pointers as members.

int main(void) Student number : 1

{ Name : Kim
struct date d = { 3, 20, 2000 }; Credit : 4.300000

struct students={ 1, "Kim" , 4.3 }; Birth : March 20, 2000

s.dob = &d;

printf("Student number : %d\n" , s.number);
printf("Name : %s\n" , s.name);
(
(

printf("Grade : %f\n" , s.grade);
printf(“Birth: Year %d month %d day \n" , s.dob ->year, s.dob ->month, s.dob ->day);

return O;

A structure that has pointers as members.

2EH s

E 1 ST iTeso S 4.3 — T——_

number mame|[10] grade dob

2=4 d

3 =~ 20 = 2000 —__
number number number

Structures and functions

« When passing a structure as an argument to a function
* A copy of the structure is passed to the function .
* If the size of the structure is large, it takes more time and memory .

int main(void)

{
F”s"”““m&”wyffffmed i struct student a = { 1, "lee", 3.8
i T
> struct™student b = { 2, "kim", 4.0 };
int equal(struct student(§i; struct student{éé) if(equah(é}{b) ==L)
{ printf("Same student \n");
if(sl.number == s2.number) ‘i\\\\\\\u__}_,,/////
return 1; else {
else printf("Other students \n");
return 0; }

Structures and functions

« When passing a pointer to a structure as an argument to a function
* It can save time and space .
» There is a possibility that the original may be modified .

int main(void)

{

Send a structure pointer.

struct student a = { 1, "lee", 3.8

—

{ printf("Same student \n");
(if(pl->number == p2->number)} —
S - J

return 1; else {
else printf("Other students \n");

return 0; "Access the structure }

s ks
42/////////// struct™student b = { 2, "kim", 4.0 };
int equal(struct student #pl, struct student fp%i\\\\\\\\‘—;j(equal(da) (&b) == 1){

} through a pointer. }

No changes via pointers

* If you only need to read the original and do not need to modify it,
you can use the const keyword when defining the parameter
as follows:

int equald&onst struct student *pl, const struct student *pz)l

{
if(pl=>number == p2->number)
return 1; Modifying the structure

else through this pointer is prohibited.

return 0;

Returning a structure

A copy is returned .

struct student create() . . .
int main(void)

{ {
struct student s; struct student a:
s.number = 3; - ’
:") (a)= create();
strcpy(s.name,"park™); :
s.grade = 4.0;
_ o return 0;
return (s;) _
o/ S _——— }

} Structure s is copied into structure a.

Lab: Vector Operations

* Let's create a function get_vector_sum () that calculates the sum of
two vectors. This function takes two vectors as arguments, adds
them, and returns the vector created as the result of the addition .

The sum of the vectors is (7.000000, 9.000000) .

Example

#include < stdio.h >

struct vector {
double x;
double y;
5

struct vector get_vector_sum (struct vector a, struct vector b);

int main(void)

{

struct vector a ={ 2.0, 3.0 };
struct vector b = { 5.0, 6.0 };
struct vector sum;

sum = get_vector_sum (a, b);
printf (“ vector of The sum is (%f, %f) .\n" , sum.x , sum.y);

return O;

Example

struct vector get_vector_sum(struct vector a, struct vector b)
{ struct vector result;

result.x = ax + bx;

result.y = ay + by;
: return result;

The sum of the vectors is (7.000000, 9.000000) .

Check points

1. When passing a struct as an argument to a function, is the original
passed or a copy passed?

2. When passing a pointer to a structure to a function , how can | avoid
modiying the structure ?

. Xl 2
Union

* union
» Multiple variables share the same memory area
« The way to declare and use a union is very similar to a structure.

union example {
char ¢; // sharing the same space
inti; // sharing the same space

5

When Only One Data Type Is Used at a Time

Example

#include < stdio.h >

union example {{
inti;
char c;

Declaration of a union

.

J7

))) Declaring a union variable .
int main(void) =

{
union examplev-JReference to char type .
v.c ="A";
printf (v.c:%c v.i :%i\n" |, v.c, v.i);
vi = 10000; Reference to type int .
printf ("v.c:%cv.i:%i\n",v.c, v.i);

}

vc:A vi :-858993599

vc :T vi: 10000

Difference between structure and union

struct student

int number;
char gender;
double grade;

union student

int number;

char gender;
double grade;

sl

4byte lbyte

Bbyte

number gender

s2

grade

Bbyte

number(4byte)
e

gender(lbyte)

-

grade(8byte)

Y

Using type fields in unions

#include < stdio.h >
#include < string.h >
#define STU_NUMBER 1
#define REG_NUMBER 2

struct student {

int type;
union {

int stu_number ; // Student number

char reg_number [15]; // resident registration number
}id;

char name[20];

5

Using type fields in unions

void print(struct student s)
{
switch (s.type)
{
case STU_NUMBER:
printf (* Student number %d\n" , s.id.stu_number);
printf (“ Name : %s\n" , s.name);
break;
case REG_NUMBER:
printf (* Resident registration number : %s\n" , s.id.reg_number);
printf (“ Name : %s\n" , s.name);
break;
default :
printf (“ TypeError \n");
break;

Using type fields in unions

{

int main(void)

struct student s1, s2;

s1.type = STU_NUMBER;
s1.id.stu_number = 20190001;
strcpy (s1.name, " Hong Gil-dong ");

s2.type = REG_NUMBER;

strcpy (s2.id.reg_number, "860101-1056076");

strcpy (s2.name, " Kim Cheol-su ");

print(s1);
print(s2);

Student number : 20190001
Name : Hong Gil-dong
Resident registration number : 860101-

1056076
Name : Kim Cheol-su

Check points

1. The keyword used to declare a union is
2. How is the size of memory allocated to a union determined ?

Enumeration

* An enumeration /s a data type that lists in advance the values that
a variable can have.

 (Example) A variable storing the day of the week can only
have one of the following values :
{ Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday}

Declaration of enumeration

Enum definition

enum days { SUN, MON, TGE, WED, THU, FRI, SAT };

When defining an enumeration Name (tag) of the enumeration

Keywords used

enum days today; Declaring enumeration variables

today = SUN; // OK!

variable today will be stored in memory as the integer value 0, because SUN maps to 0.
Compiler => #define SUN 0

#define MON 1

#define 2

int today = SUN; // becomes: int today = O;

Why we need enumerations

* You can write a program like this : Let's think about the
problem .
* int today;
 today = 0; // Sunday
« today = 1; // Monday

* If you use enumerations,
* It can reduce errors and improve readability .

« The symbolic constant SUN is more preferable than 0, because its
meaning is easier to understand .

* |t is also necessary to block meaningless values such as 9 from being
assigned to today in advance.

Enumeration Initialization

enum days { SUN, MON, TUE, WED, THU, FRI, SAT }; // SUN=0, MON=1, ...
enum days { SUN=1, MON, TUE, WED, THU, FRI, SAT }; // SUN=1, MON=2, ...
enum days { SUN=7, MON=1, TUE, WED, THU, FRI, SAT=6 }; // SUN=7, MON=1,

If you do not specify a value,
it is assigned from 0.

Examples of enumerations

enum colors { white, red, blue, green, black };
enum boolean { false, true };
enum levels { low, medium, high };

enum car_types { sedan, suv , sports_car , van, pickup, convertible };

Example

#include < stdio.h >
enum days { SUN, MON, TUE, WED, THU, FRI, SAT };

char * days_name [] = {
“sunday”, "monday”, "tuesday”, "wednesday", "thursday”, "friday”, "saturday” };

int main(void)

{
enum days d;
d = WED;
printf ("The % dth day of the week is %s \n" , d, days_name [d]);
return 0;
}

The third day of the week is wednesday

Comparison of enumerations with other

methods

Use of integers

switch (code) {
case 1:
printf ("LCD TV\n");
break ;
case 2:
printf (“OLED TV\n");
break ;

Computers are easy to
understand, but people have
difficulty remembering .

Symbolic Constant

define LCD 1
#define OLED 2

switch (code) {
case LCD:
printf ("LCD TV\n");
break ;
case OLED:
printf (“OLED TV\n");
break ;

3

When writing symbolic
constants .

Enumeration

enum tvtype { LCD, OLED };
enum tvtype code;

switch (code) {
case LCD:
printf ("LCD TV\n");
break ;
case PDP:
printf (“OLED TV\n");
break ;

3

The compiler checks to ensure
that no duplication occurs .

Check points

1. The keyword used to declare an enumeration is
2. In what cases are enumerations used ?

3. If a value is not specifically specified in an enumeration,
Is an integer value automatically assigned ?

The concept of typedef

typedef is adding a new We would like to announce
data type to the basic data that a new type called INT32
types. is now available.

typedef

Syntax typedef definition)

Existing data type new data type
typedef ‘ ‘

This defines the existing
data type unsigned char as a new data type

BYTE.

Example of typedef

typedef unsigned char BYTE;
BYTE index; // Same as unsigned int index;

typedef int INT32;
typedef unsigned int UINT32;

INT32 i; // Same as int
UINT32 k; // Same as unsigned int k ;

Defining a new type as a struct

* As a structure You can define new types .

struct point {
int x;
inty;
3
typedef struct point POINT ;
POINT a, b;

typedef struct complex {
double real;
double image;

} COMPLEX;

COMPLEX x, v;

Comparison of typedef and #define

* Increases portability.
« Code can be made independent of computer hardware

« (Example) The int type is 2 bytes or 4 bytes . If you use INT32 or
INT16 using typedef instead of the int type, you can clearly specify
whether it is 2 bytes or 4 bytes .

* You can achieve a similar effect to typedef by using #define .
That is, you can define INT32 as follows :
« #define UINT32 unsigned int
- typedef float VECTOR[2];// Not possible with #define .

e It also serves as documentation .
 Using typedef has the same effect as adding a comment.

Check points

1. What is the use of typedef ?
2. What are the advantages of typedef ?

3. Let 's define a structure representing an employee and define it
as a new type called employee using typedef .

