
Ch.13 Structure

What you will learn in this chapter

•Structure concept, definition,
and initialization method

•Relationship between
structures and pointers
•Unions and typedefs

Structures are an

important tool for

grouping different

data together .

Classification of data types

Array

The need for structures

• How to gather data about students into one place ?

int number;

char name[10];

double grade;

It can be expressed

as individual variables

like this, but can it be

grouped ?

Student number: 20251234 (Number)
Name: “first last” (String)
Grade: 4.3 (Real number)
…

The need for structures

Structures allow you

to group

variables together.

Arrays and Structures

Group variables of the same type Group variables of different types

Array

Check points

1. Discuss the difference between structures and arrays .

2. Struct example

- Student information

. Member functions

- Car

. Member functions

Structure definition

Keyword used when defining a structure

Name of a structure

There must be a semicolon at the end

Structure definition

struct student p1;

This line is a declaration and definition of a variable of type struct student.

● It declares a variable p1.

● If struct student has already been defined, then this line also allocates memory for p1.

● Therefore, it is a definition of a variable, not just a declaration of the structure type.

Structure declaration

• A structure definition is not a variable declaration.

Defining a structure is

like a mold for making waffles.

To actually make waffles you need

to declare a structure variable.

Structure
ex) int

Structure variable
ex) int a

struct Person {

int age;

}; // structure definition

struct Person p1; // variable declaration + memory allocation (definition)

Declaration & Definition

Code Declaration? Definition? Memory Allocated? Notes

int a; ✅ ✅ ✅ Declaration + Definition

extern int a; ✅ ❌ ❌ Declaration only (defined

elsewhere)

int a = 5; ✅ ✅ ✅ Declaration + Definition +

Init

Code Type Memory Allocated? Notes

struct Person; Type Declaration ❌ Forward declaration (no size

info)

struct Person { int age;
};

Type Definition ❌ Defines structure layout

struct Person p1; Variable Declaration +

Definition

✅ Declares and allocates p1

Example of a structure definition

// Screen coordinates made up of x

struct point {

int x; // x coordinate

int y; // y coordinate

};

// Complex number

struct complex {

double real; // real part

double imag ; // imaginary part

};

// date

struct date {

int month;

int day;

int year;

};

// square

struct rect angle {

int x , y ;

int width;

int height ;

};

Declaring a structure variable

• Defining a structure and declaring a structure variable are different.

Definition of Struct

Declaration of Struct

Initializing a structure

• Initial values are listed using curly brackets .

struct student {

int number;

char name[10];

double grade;

};

struct student s1 = { 24, "Kim" , 4.3 }; // s1 is NOT a pointer,

// it’s variable of derived data type

Structure member reference

.
. symbol is an operator
used when referencing

members in a structure .

Example #1

Structure
declaration

Declaring a
structure
variable Structure

member
reference

Student number : 20230001
Name : Hong Gil-dong
GPA : 4.30

Practice
Codespace

Example #2
struct student {

int number;

char name[10];

double grade;

};

int main(void)

{

struct student s;

printf (" Student number Enter : ");

scanf ("%d" , & s.number);

printf (" name Enter : ");

scanf ("%s" , s.name);

printf (" Credit Enter (error): ");

scanf ("%lf" , & s.grade);

printf (“ \ nStudent number : %d\n" , s.number);

printf (" Name : %s\n" , s.name);

printf (" Grade : % .2f \n" , s.grade);

return 0;

}

Structure
declaration

Declaring a structure
variable

Passing the address of
a structure member

Enter your student number : 20230001
Enter your name : Hong Gil-dong
Enter your grade (error): 4.3

Student number : 20230001
Name : Hong Gil-dong
GPA : 4.30

Codespace

New initialization method
#include < stdio.h >

// Represents a point in two-dimensional space as a structure .

struct point {

int x;

int y;

};

int main(void)

{

struct point p = { 1, 2 }; // ①
struct point q = { .y = 2, .x = 1 }; // ②

struct point r = p; // ③
r = (struct point) { 1, 2 }; // ④

printf("p=(%d, %d)\n" , p.x, p.y);

printf("q=(%d, %d) \n" , q.x, q.y);

printf("r=(%d, %d)\n" , r.x, r.y);

return 0;

}

Lab: Representing points in two-
dimensional space as structures

• Get the coordinates of two points from the user and calculate
the distance between the two points. The coordinates of the
points are expressed as a structure .

Enter the coordinates of the point (xy): 10 10
Enter the coordinates of the point (xy): 20 20
The distance is 14.142136 .

Source code

#include < stdio.h >
#include < math.h >
struct point {

int x;
int y;

};

int main(void)
{

struct point p1, p2;
int xdiff , ydiff ;
double dist ;

printf (" dot Coordinates Enter (x y): ");
scanf ("%d %d" , &p1.x, &p1.y);

printf (" dot Coordinates Enter (x y): ");
scanf ("%d %d" , &p2.x, &p2.y);

p1 (x,y)

p2 (x,y)

xdiff = p1.x - p2.x;
ydiff = p1.y - p2.y;

dist = sqrt((double)(xdiff * xdiff + ydiff * ydiff));
printf (" The distance is % f .\n" , dist);
return 0;

}

Enter the coordinates of the point (x y): 10 10
Enter the coordinates of the point (x y): 20 20
The distance is 14.142136 .

Source code

Check points

1. Each variable declared within a structure is called ______ .

2. The keyword used to declare a structure is _______ .

3. Why are tags needed for structures , and what is the difference
between using tags and not using them ?

4. Are variables created just by declaring a structure ?

5. What is the operator for referencing members of a structure ?

A structure that has structures as members.

struct date {

int year;

int month;

int day;

};

struct student { // Structure declaration

int number;

char name[10];

struct date dob ; // structure within structure

double grade;

};

struct student s1; // Declare structure variable

s1.dob.year = 1983; // Member reference

s1.dob.month = 03;

s1.dob.day = 29;

Lab: Representing a rectangle as a
point structure

• the point structure from the previous example to represent
the coordinates of the vertices .

Enter the coordinates in the upper left corner : 10 10
Enter the coordinates in the upper right corner : 20 20
The area is 100 and the perimeter is 40 .

Example

#include < stdio.h >

struct point {
int x;
int y;

};

struct rect {
struct point p1;
struct point p2;

};

int main(void)
{

struct rect r;
int w, h, area, peri;

Codespace

Example

printf("Enter the coordinates of the upper left corner: ");
scanf("%d %d" , &r.p1.x, &r.p1.y);

printf("Enter the coordinates of the upper right corner: ");
scanf("%d %d" , &r.p2.x, &r.p2.y);

w = r.p2.x - r.p1.x;
h = r.p2.x - r.p1.x;

area = w * h;
peri = 2 * w + 2 * h;
printf("Area is %d and perimeter is %d.\n" , area, peri);

return 0;
}

Enter the coordinates in the upper left corner : 1 1
Enter the coordinates in the upper right corner : 6 6
The area is 25 and the perimeter is 20 .

Assignment and comparison of structure
variables

• Assignment of variables of the same structure is possible,
but comparison is not possible .

Not pointer,

It’s a variable of derived data type

Example
• Assignment of variables of the same structure is possible, but
comparison is not possible .

struct point {

int x;

int y;

};

int main(void)

{

struct point p1 = {10, 20};

struct point p2 = {30, 40};

p2 = p1; // Substitution possible

if (p1 == p2) // Compare -> Compile error !!

printf (" p1 and p2 It's the same .")

if ((p1.x == p2.x) && (p1.y == p2.y)) // Correct comparison

printf (" p1 and p2 It's the same .")

}

Check points

1. What operations are allowed between variables of a structure ?

2. What is the difference between structure tags and structure variables ?

3. Can a structure be inserted as a structure member ?

4. Can a structure have an array as a member ?

Array of structures

• A collection of multiple structures

Array of structures

struct student {
int number;
char name[20];
double grade;

};

int main(void)
{

struct student list[100]; // Declare an array of structures

list[2].number = 24;
strcpy (list[2].name, " Hong Gil-dong ");
list[2].grade = 4.3;

}

Array of structures initialization

struct student list[3] = {
{ 1, "Park", 3.42 },
{ 2, "Kim", 4.31 },
{ 3, "Lee", 2.98 }

};

Calculate the number of elements in
an array of structures

• To automatically find the number of elements in an array of
structure,Divide the total number of bytes in the entire array by the
number of bytes in each element .

• n = sizeof (list)/ sizeof (list[0]);

• or
• n = sizeof (list)/ sizeof (struct student);

This is only
possible within

the same
function .

Enter your student number :
20190001
Enter your name : Hong Gil-dong
Enter your grade (error): 4.3
Enter your student number :
20190002
Enter your name : Kim Yu-shin
Enter your grade (incorrect): 3.92
Enter your student number :
20190003
Enter your name : Lee Seong-gye
Enter your grade (incorrect): 2.87
Name : Hong Gil-dong , Grade :
4.300000
Name : Kim Yu-shin , Grade :
3.920000
Name : Lee Seong-gye , Credit :
2.870000

Practice

Check points

1. Define an array of structures that can store information about five products.
Products have number, name , and price as members .

Structures and Pointers

1. Pointer to a structure

2. A structure that has pointers as members.

sp

grade

name

Number

Pointer to a structure

struct student *p;

struct student s = { 24, “Kim”, 4.3 };
struct student *p;

p = &s;

printf("Student number =%d Name =%s Grade =%f \n" , s.number , s.name, s.grade);
printf("Student number =%d Name =%s Grade =%f \n" , (*p).number,(*p).name,(*p).grade);

-> Operator

• -> operator is used when referencing a structure member with
a structure pointer.

struct student *p;

struct student s = { 24, “Kim”, 4.3 };

struct student *p;

p = &s;

printf("Student number =%d Name =%s Key =%f \n", p->number, p->name, p->grade);

-> Operator

Example

Student number = 1 Name = Hong Gil-dong Grade = 4.300000
Student number = 1 Name = Hong Gil-dong Grade = 4.300000
Student number = 1 Name = Hong Gil-dong Grade = 4.300000

Practice

A structure that has pointers as members.

struct date {

int month;

int day;

int year;

};

struct student {

int number;

char name[20];

double grade;

struct date *today ;

};

Codespaces

A structure that has pointers as members.

int main(void)

{

struct date d = { 3, 20, 2000 };

struct student s = { 1, "Kim" , 4.3 };

s.dob = &d;

printf("Student number : %d\n" , s.number);

printf("Name : %s\n" , s.name);

printf("Grade : %f\n" , s.grade);

printf(“Birth: Year %d month %d day \n" , s.dob ->year, s.dob ->month, s.dob ->day);

return 0;

}

Student number : 1
Name : Kim
Credit : 4.300000
Birth : March 20 , 2000

A structure that has pointers as members.

Structures and functions

• When passing a structure as an argument to a function
• A copy of the structure is passed to the function .

• If the size of the structure is large, it takes more time and memory .

Structures and functions

• When passing a pointer to a structure as an argument to a function
• It can save time and space .

• There is a possibility that the original may be modified .

No changes via pointers

• If you only need to read the original and do not need to modify it,
you can use the const keyword when defining the parameter
as follows:

Returning a structure

• A copy is returned .

Lab: Vector Operations

• Let's create a function get_vector_sum () that calculates the sum of
two vectors. This function takes two vectors as arguments, adds
them, and returns the vector created as the result of the addition .

The sum of the vectors is (7.000000, 9.000000) .

Example

#include < stdio.h >

struct vector {
double x;
double y;

};
struct vector get_vector_sum (struct vector a, struct vector b);

int main(void)
{

struct vector a = { 2.0, 3.0 };
struct vector b = { 5.0, 6.0 };
struct vector sum;

sum = get_vector_sum (a, b);
printf (" vector of The sum is (%f, %f) .\n" , sum.x , sum.y);

return 0;
}

Example

struct vector get_vector_sum(struct vector a, struct vector b)
{

struct vector result;

result.x = ax + bx;
result.y = ay + by;

return result;
}

The sum of the vectors is (7.000000, 9.000000) .

Check points

1. When passing a struct as an argument to a function, is the original
passed or a copy passed?

2. When passing a pointer to a structure to a function , how can I avoid
modiying the structure ?

Union

• union​
• Multiple variables share the same memory area

• The way to declare and use a union is very similar to a structure.

union example {

char c; // sharing the same space

int i; // sharing the same space

};

제외

When Only One Data Type Is Used at a Time

Example

#include < stdio.h >

union example {

int i ;

char c;

};

int main(void)

{

union example v;

v.c = 'A' ;

printf (" v.c :%c v.i :% i \n" , v.c , v.i);

vi = 10000;

printf (" v.c :%c v.i :% i \n" , v.c , v.i);

}

Declaration of a union

Declaring a union variable .

Reference to char type .

Reference to type int .

vc:A vi :-858993599

vc :† vi:10000

Difference between structure and union

Using type fields in unions

#include < stdio.h >

#include < string.h >

#define STU_NUMBER 1

#define REG_NUMBER 2

struct student {

int type;

union {

int stu_number ; // Student number

char reg_number [15]; // resident registration number

} id;

char name[20];

};

Using type fields in unions

void print(struct student s)

{

switch (s.type)

{

case STU_NUMBER:

printf (" Student number %d\n" , s.id.stu_number);

printf (" Name : %s\n" , s.name);

break;

case REG_NUMBER:

printf (" Resident registration number : %s\n" , s.id.reg_number);

printf (" Name : %s\n" , s.name);

break;

default :

printf (" TypeError \n");

break;

}

}

Using type fields in unions

int main(void)

{

struct student s1, s2;

s1.type = STU_NUMBER;

s1.id.stu_number = 20190001;

strcpy (s1.name, " Hong Gil-dong ");

s2.type = REG_NUMBER;

strcpy (s2.id.reg_number, "860101-1056076");

strcpy (s2.name, " Kim Cheol-su ");

print(s1);

print(s2);

}

Student number : 20190001

Name : Hong Gil-dong

Resident registration number : 860101-

1056076

Name : Kim Cheol-su

Check points

1. The keyword used to declare a union is _______ .

2. How is the size of memory allocated to a union determined ?

Enumeration

• An enumeration is a data type that lists in advance the values that
a variable can have.

• (Example) A variable storing the day of the week can only
have one of the following values :
{ Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday}

Declaration of enumeration

enum days today;

today = SUN; // OK!

Declaring enumeration variables

variable today will be stored in memory as the integer value 0, because SUN maps to 0.

Compiler => #define SUN 0

#define MON 1

#define …. 2

int today = SUN; // becomes: int today = 0;

Why we need enumerations

• You can write a program like this : Let's think about the
problem .

• int today;

• today = 0; // Sunday

• today = 1; // Monday

• If you use enumerations,
• It can reduce errors and improve readability .

• The symbolic constant SUN is more preferable than 0, because its
meaning is easier to understand .

• It is also necessary to block meaningless values such as 9 from being
assigned to today in advance.

Enumeration Initialization

enum days { SUN, MON, TUE, WED, THU, FRI, SAT }; // SUN=0, MON=1, ...

enum days { SUN=1, MON, TUE, WED, THU, FRI, SAT }; // SUN=1, MON=2, ...

enum days { SUN=7, MON=1, TUE, WED, THU, FRI, SAT=6 }; // SUN=7, MON=1,

...

If you do not specify a value,
it is assigned from 0.

Examples of enumerations

enum colors { white, red, blue, green, black };

enum boolean { false, true };

enum levels { low, medium, high };

enum car_types { sedan, suv , sports_car , van, pickup, convertible };

Example

#include < stdio.h >

enum days { SUN, MON, TUE, WED, THU, FRI, SAT };

char * days_name [] = {

"sunday", "monday", "tuesday", "wednesday", "thursday", "friday", "saturday" };

int main(void)

{

enum days d;

d = WED;

printf ("The % dth day of the week is %s \n" , d, days_name [d]);

return 0;

}

The third day of the week is wednesday

Comparison of enumerations with other
methods

Use of integers Symbolic Constant Enumeration

switch (code) {

case 1:

printf ("LCD TV\n");

break ;

case 2:

printf (“OLED TV\n");

break ;

}

define LCD 1

#define OLED 2

switch (code) {

case LCD:

printf ("LCD TV\n");

break ;

case OLED:

printf (“OLED TV\n");

break ;

}

enum tvtype { LCD, OLED };

enum tvtype code;

switch (code) {

case LCD:

printf ("LCD TV\n");

break ;

case PDP:

printf (“OLED TV\n");

break ;

}

Computers are easy to

understand, but people have

difficulty remembering .

When writing symbolic

constants .

The compiler checks to ensure

that no duplication occurs .

Check points

1. The keyword used to declare an enumeration is _______ .

2. In what cases are enumerations used ?

3. If a value is not specifically specified in an enumeration,
is an integer value automatically assigned ?

The concept of typedef

typedef

Example of typedef

typedef unsigned char BYTE;

BYTE index; // Same as unsigned int index;

typedef int INT32;

typedef unsigned int UINT32;

INT32 i; // Same as int

UINT32 k; // Same as unsigned int k ;

struct point {

int x;

int y;

};

typedef struct point POINT ;

POINT a, b;

Defining a new type as a struct

• As a structure You can define new types .

typedef struct complex {

double real;

double image;

} COMPLEX;

COMPLEX x, y;

Comparison of typedef and #define

• Increases portability.
• Code can be made independent of computer hardware

• (Example) The int type is 2 bytes or 4 bytes . If you use INT32 or
INT16 using typedef instead of the int type, you can clearly specify
whether it is 2 bytes or 4 bytes .

• You can achieve a similar effect to typedef by using #define .
That is, you can define INT32 as follows :

• #define UINT32 unsigned int

• typedef float VECTOR[2];// Not possible with #define .

• It also serves as documentation .
• Using typedef has the same effect as adding a comment.

Check points

1. What is the use of typedef ?

2. What are the advantages of typedef ?

3. Let 's define a structure representing an employee and define it
as a new type called employee using typedef .

Q & A

