Ch.15 File Input/Output

What vou will learn in this chapter

* The concept of.strips

«Standard Input/
« File Input/Output
* Input/output related
functions

Learn about
concepts and
functions
related to
input/output .

The concept of stream

« Stream : Thinking of input and output as a flow of bytes .

-byte

) e[e

output stream
program

input stream

1

Streams and Buffers

A stream contains a buffer by default .

program

Standard Input/Output Streams

name stream
Stdin standard input stream
Stdout standard output stream
Stderr standard error stream

connection device

keyboard

monitor screen

monitor screen

4 ™

PC
N _
4 N

keyboard

__#0 stdin

. 4

monitor i

#2 stderr

)

program

Classification of input/output functions

stream
standard stream
form

getchar()
tchar
Unformatted input/output pu O
(character format) gets_s()
puts()
Formatted input/output printf()
(integer, real number etc)
scanf()

normal stream

fgetc(FILE *f,...)
fputc(FILE *f,...)
fgets(FILE *f,...)
fputs(FILE *f,...)
fprintf(FILE *f,...)

fscanf(FILE *f,...)

Character input function
Character output function
string input function
string output function
Formatted output function

Formatted input function

Why do | need files?

Variables, arrays,

structures, etc.
are all created in

memory and

they all disappear

when the power is

int main(void)

turned

memory off.

hard disk
If you save it as
a file, the data

will be preserved

even if the power

is turned off.

The concept of a file

A file in C is a series of contiguous bytes.
« All file data is eventually converted to bytes and stored in a file.
* It is entirely up to the programmer to interpret these bytes.

file

byte) byte1 byte2 byte3 RS byte n

Start Of ﬁle Curren t location end Of ﬁle

file

* A file contains 4 bytes, it can be interpreted as either integer
data of type int or real number data of type float.

One integer ?
One real nember ?
4 characters ?

file

text file

« A text file is a file that contains human-readable text.
 (Example) C program source file or notepad file

« Text files are saved using ASCII codes.
e A text file consists of consecutive lines.

e —
i #include <stdio.h> cpq2 e ey 2|leqg a|lepmr e ’
S@'/ #include <stdlib.h> H[E*["L"["L"| O (&
B f/p | int main(void)
aemd? :
noad? i i lenr2lepm2 e 2|l eno | ’
s M p=(int *)malloc(100); W 0 24 JE D’|"\n
. i = ..
‘ ’ ‘ ’ ¢ °) ‘ ’ ‘ ’ ‘ ’ ‘ ‘ ’
e (haleE s i’|‘s \n
Text file: a file consisting of characters text file

text file

 Each operating system has a different way of displaying line breaks.

‘w’ ‘0’ ‘R'} ‘L’ ‘D’ ‘\n’ ‘\r_,

Windows, MS_DOS

‘w’ ‘0’ ‘R'} ‘L’ ‘D’ ‘\r’

macintosh

Text file in windows

« For example, in Windows, text files are saved as shown
In Figure 15-7 .

!_j Lister - [c:#WUserschunwDocuments#Visual Studio 2008%Projectswkkkikkkkkk cpp] o &3] =]
meF) BEE S80) A3 E2UH) 100 %
00000000: 48 45 4C 4C 4F |BD OA| 57 |4F 52 4C 44 21 6D 6A 54 | HELLONEWORLD*EET
000000108: 68 69 73 20 69 | his is a

10
ms
njo

LIEFACE,

A

binary file

* Binary files are files that cannot be read by humans but can
be read by computers.

* A file that directly stores binary data.

* Binary files, unlike text files, are not separated into lines.

* All data is input/output without being converted to strings.
* Binary files can only be read by certain programs.

* (Example) C program executable file, sound file, image file

28 | 35| 87 | 23 |255

20199 (47(123|133|28|35(0 (11|89

Binary file: A file consisting of data. binary file

Overview of file processing

« When handling files, you must follow this order :

Open ﬁle Reading and writing files C|Ose ﬁle

* Disk files are accessed using the FILE structure.
* A file pointer is a pointer to a FILE structure.

Open file

file name file mode

FILE *fp;

fp = fopen("test.txt", "w");

FILE structure

- fopen () creates a file with the given file name and returns a
FILE pointer .

struct _ 1obuf {

char * _ptr ;

int _cnt ;

char * base;

int _flag;

it _file;

it _ charbuf ;

mt _ bufsiz ;

char * _tmpfname ;
12
typedef struct _ iobuf FILE;

File Mode

mode explanation

o i Opens_a-file in read mode. If the file does not exist,_an error occurs.

"w" Creates_a.new file in write mode. If the file already exists, its contents are erased.

noe Opens afile in append mode. If the file already exists, the data is appended to the end of the file. If the file does not exist, a new
file is created.

"r+" Opens_afile in read mode. Can be_switched to write mode. The file must exist.

s Creates_a_new file in write mode. Can be switched.to_read mode. If the file already exists, its contents will be erased.

no gt Opens afile in append mode. Can switch_to read mode. Appending data moves the EOF marker to the end of the appended data. If
the file does not exist, a new file is created.

g e Opens the file in_text file mode.

"p" Opens a file in_binary file mode.

Basic file mode

r] d
Read from the beginning of the file Write from the beginning of the file. Write from the beginning of the file.
If the file exists, its existing contents If the file does not exists,

will be erased It is created.

Things to note

* You can append "t" or "b" to the basic file mode .

« "a" or "a+" mode is called append mode. When a file is opened
in append mode, all write operations occur at the end of the file.
Therefore, any existing data in the file is never erased.

« the "r+", "w+", or "a+" file mode is specified, both reading and
writing are possible. This mode is called update mode .
To switch from read mode to write mode, or from write mode to

read mode, you must call one of fflush(), fsetpos(), fseek(), or
rewind() .

Close file

FILE pointer
fclose(f{

Example

#include < stdio.h >
int main(void)

{ p\e.’04t
fp = fopen ("sample.txt" , "wW"); ?

i (fp == NULL) ——
printf (" file opening Failed \n"); /

else
printf (" file opening Success \n");

fclose (fp);
return O;

File opening success

File deletion example

#include < stdio.h >
int main(void)
{
if (remove("sample.txt”) == -1)
printf ("sample.txt cannot be deleted .\n");
else
printf ("sample.txt has been deleted .\n");
return 0;
3

sample.txt has been deleted .

Other useful functions

function explanation

int foef(FI LE *s‘t]"eam) Returns true when the end of the file is reached.
int rename(const char *oldname, const char *newname) | Change the name of the file.

FILE *tmpflle() Creates and returns a temporary file.

Returns the error status of the stream. If an error occurs,

int ferror(FILE *stream) - e e

File input/output functions

type input function output function
character unit int fgetc(FILE *fp) ‘int fputc(int ¢, FILE *fp)
string unit 7.char *fgets(char *buf, int n, FILE *fp) Trint fputs(const char *buf, FILE *fp)
formattedinputandoutput | iNt fscanf(FILE *fp, ...) int fprintf(FILE *fp,...)
iy data size_t fread(char *buffer, int size, int ‘size_t fwrite(char *buffer, int size,

' count, FILE *fp)

'int count, FILE *fp)

Broadly speaking, it
can be divided into
text input/output
functions and binary
data input/output .

Character unit input/output

#include < stdio.h >
int main(void)

{
FILE * fp = NULL;

fp = fopen ("sample.txt” , "w");
if (fp == NULL)

printf (" file opening Failed \n");
else

printf (" file opening Success \n");

fputc (a), fp);
fputc (b, fp);
fputc (c, fp);
fclose (fp);

return O; File open success

LF BTE MHO) 2V ESTH)
abd

Character unit input/output

#include < stdio.h >
int main(void)
{
FILE * fp = NULL;
int ¢;
fp = fopen ("sample.txt” , "r");
if (fp == NULL)
printf (" file opening Failed \n");
else
printf (" file opening Success \n");

while ((c = fgetc (fp)) != EOF)
putchar (c);

fclose (fp);

return O;

must be declared as an integer
variable. The reason is explained
in the next slide .

File open success
abc

HA©O) 27V EBH)

EHEE

oHR
abd

EOF

« EOF(End Of File): A special symbol indicating the end of a file.
#define EOF (-1)

program

String unit input/output

String unit input/output

store string here Al
char *fgets(char *s, 1nf/ﬁ FILE *fp);
int fputs(char *s, FILE *fp);

How does fgets() know it's reading one line?
fgets(buffer, size, fp) reads characters
from a file until one of the following happens:

1. A newline character (#n) is read
2. size - 1 characters have been read

(to leave space for the null terminator)
3. End of File (EOF) is reached

So, it stops at the end of a line, meaning it reads one line at a time,
including the newline ¥Wn.

String unit input/output

#include < stdio.h >
#include < stdlib.h >

int main(void)
{
FILE *fp1, *fp2;
char file1[100], file2[100];
char buffer[100];

printf (" original file name : ");
scanf ("%s", file1);

printf (" copy file name : ");
scanf ("%s" , file2);

// first The file Read In mode Open .

if ((fp1 = fopen (file1, "r")) == NULL)

{
fprintf (stderr , " original Cannot open file % s .\n", file1);
exit(1);

String unit input/output

/1 second The file write In mode Open .

if ((fp2 = fopen (file2, "w")) == NULL)

{
fprintf (stderr , " copy Cannot open file % s .\n" , file2);
exit(1);

3

// first The file second To file Copy .
while (fgets (buffer, 100, fp1) != NULL)
fputs (buffer, fp2);

fclose (fp1);
fclose (fp2);

return O;

Original file name: a.txt

Copy file name: b. txt

Lab: Finding a specific string in a file

* Let's write a program that searches for a specific string in a text
file. It takes the input text file name and the string to search for

from the user.

/5 It proverbs.txt

Absence makes the heart grow fonder.
Actions speak louder than words.
ALl for one and one for all.

All's fair in love and war.

Enter the input file name : proverbs. txt
Enter the word you want to search for . man
proverbs.txt: 16 Behind every good man is a good woman.

proverbs.txt: 41 A dog is a man's best friend.
proverbs.txt: 57 Early to bed and early to rise makes a man healthy, wealthy, and

wise.

#include < stdio.h >
#include < string.h >

int main(void)
{
FILE * fp ;
char fname [128], buffer[256], word[256];
int line_num = 0;

printf (" Enter the input file name : ");
scanf ("%s" , fname);

printf (" Enter the word to search : ");
scanf ("%s" , word);

// Open the file in read mode .
if ((fp = fopen (fname , "r")) == NULL)
{
fprintf (stderr , " Cannot open file %s .\n" , fname);
exit(1);
3

while (fgets (buffer, 256, fp)) {
line_num ++;
if (strstr (buffer, word)) {
printf ("%s: %d word %s found .\n" , fname , line_num , word);

}

3
fclose (fp);

return O;

Formatted Input/Output

m formatted input and output)

int fprintf(FILE *fp, const char *format, ...);
int fscanf(FILE *fp, const char *format, ...);

Example

int main(void)
{
FILE * fp ;
char fname [100];
int number, count = 0;
char name[20];
float score, total = 0.0;

printf (* Grade file Name Enter : ");
scanf ("%s" , fname);

// Grades The file write In mode Open .

if ((fp =fopen (fname , "W")) == NULL)

{
fprintf (stderr , " grades Cannot open file % s .\n" , fname);
exit(1);

Example

// From the user Student number , name , and grades Input it In the file Save it.
while (1)
{
printf (" Student number , name , grade Please enter : (if negative end)");
scanf ("%d" , &number);
if (number < 0) break
scanf ("%s %f" , name, &score);
fprintf (fp, " %d %s %f" , number, name, score);
3
fclose (fp);
// Grades The file Read In mode Open .
if ((fp =fopen (fname , "r")) == NULL)
{
fprintf (stderr , " grades Cannot open file % s .\n" , fname);
exit(1);

Example

// from file Grades Read it The average Save .

while (! feof (fp))

{
fscanf (fp , "%d %s %f" , &number, name, &score);
total += score;
count++;

3

printf (" average = %f\n" , total/count);

fclose (fp);

return O;

Enter the score file name - scores. txt

Enter your student number , name , and grade : (end if negative)1 KIM 10.0
Enter your student number , name , and grade : (end if negative)2 PARK 20.0
Enter your student number , name , and grade : (end if negative)3 LEE 30.0

Enter your student number , name , and grade - (end if negative) —1
Average = 20.000000

e Practice text with vsc

https://github.com/prof-kweon/C—-Language—Course/blob/main/3.Practice/file_text.c

#include <stdio.h>
int writeFile(void)

{

FILE * fp = NULL;

fp = fopen ("sample.txt" , "w");
if (fp == NULL) {
printf ("file opening Failed \n");
}
else {
printf ("file opening Success \n");

}

// 1. save character
fputc ('a', fp);
fputc ('b", fp);
fputc ('c', fp);
fputc ("\n', fp);

// 2. save string
fputs("hello", fp);
fputs(" world\n", fp);

// 3. save number
fprintf(fp, "%d %d %d %.2f", 1, 2, 3,

3.14);

fclose (fp);
return 0;

int readFile() {

FILE *fp = fopen("sample.txt", "r"); // read mode

if (fp == NULL) {
printf("Fail to open\n");

return 1;
}
// 1. read 4 characters
char chl = fgetc(fp);
char ch2 = fgetc(fp);
char ch3 = fgetc(fp);
char ch4 = fgetc(fp);

// 2. read string (12 character "hello world\n"
// including white space)

char stri[10];

char str2[10];

fscanf(fp, "%s %s", strl, str2);

// 3. read 3 integers & 1 real number

int nl1, n2, n3;

float f;

fscanf(fp, "%d %d %d %f", &nl, &n2, &n3, &f);

// print

printf("\n== readFile ==\n");

printf("Chars: %c %c %c %c", chl, ch2, ch3, ch4);
printf("String: %s %s\n", strl, str2);
printf("Integers: %d %d %d\n", nl, n2, n3);
printf("Float: %.2f\n", f);

fclose(fp);
return 0;

int

{

int

readFileByOne(void)

FILE * fp = NULL;
int c;
fp = fopen ("sample.txt" , "r");
if (fp == NULL)
printf ("file opening Failed \n");
else
printf ("file opening Success \n");

printf("\n== readFileByOne ==\n");

while ((c = fgetc (fp)) != EOF) {
putchar (c);

}

fclose (fp);

return 9;

readFileByLine(void)

FILE * fp = NULL;
int SIZE = 100;
char line[SIZE];

fp = fopen ("sample.txt" , "r");
if (fp == NULL)

printf ("file opening Failed \n");
else

printf ("file opening Success \n");

printf("\n== readFileByLine ==\n");

while (fgets (line, SIZE, fp)) {
printf ("%s", line);

}

fclose (fp);

return 0;

void main()

{

writeFile();
readFile();
readFileByOne();
readFileBylLine();

Writing and reading binary files

* Difference between text files and binary files

 Text file . All data is converted to ASCIl code and saved.
* Binary file . Stores data exactly as it is represented on a computer.

text file
3 2" 3 ‘4" 55s '6'
00110001 || 00110010 || 00110011 || 00110100 || 00110101 || 00110110
Integer 123456
\ binary file
00000000 || 900001 || 11100010 || ©1000000

Example of a binary file

* Image file or sound file

=y
.
.
‘i
&
||
2

=
i
u
i
|
u
N
u
i
]
3
el

The brightness of each pixel is represented

in binary.

Write binary file

#include < stdio.h >

#define SIZE 5
int main(void)

{

int buffer[SIZE] = { 10, 20, 30, 40, 50 };
FILE * fp = NULL ;

fp = fopen (" binary.bin“ ,"wb"); // ©

if (fp == NULL)

{
fprintf (stderr , " binary.bin Cannot open file .");
return 1;

}

fwrite (buffer, sizeof (int), SIZE , fp); // @

fclose (fp);
return 0;

Binary file mode

file mode explaraton
"rp" Read mode + binary file mode
"wb" Write mode + binary file mode
"a b" Additional mode + binary file mode
"rb+" Read and write mode + binary file mode

wb+

Write and read mode + binary file mode

Write binary file

fwrite()
’ -y number of items
address of memory bloc
| fwrite(buff i fZ' t) sﬁg fp)
ves write(buffer, sizeof(int), , 3
size of the item ; { FILE pointer
fwrite (buffer, size, count, fp
o) buffer is the starting address of the memory number of items
block that contains the data to be written to ')
: / .
the file . _
e size is the size of the item being stored, in item |y)
bytes . N
e count is the number of items you want to size of the item
store. buffer

If you want to write 10 int type data, the item
size will be 4 and the number of items will be
10 .

P - ol | B el - R

Reading binary files

#include < stdio.h >
#define SIZE 5

int main(void)

{
inti;
int buffer[SIZE];
FILE * fp = NULL ;

fp = fopen (“ binary.bin ", "rb ");
if (fp == NULL)
{

fprintf (stderr , " binary.bin Cannot open file .");

return 1;

3
fread (buffer, sizeof (int), SIZE , fp);

for (i = 0; i < SIZE ; i++)
printf ("%d ", buffer[i]);

fclose (fp);
return O;

10 20 30 40 50

Reading binary files

fread()
address f)f memory b.lock /ﬂumb@f it
yes | fread(buffer, sizeof(int), SIZE, fp);
size of the item / \ FILE pointer
fread (buffer, Size, Count, fp number of items
) buffer is the starting address of the memory /' , —
block that contains the data to be written to T
the file . |
e size is the size of the item being stored, in —
byteS . size of the item

e count is the number of items you want to store PuTTer
. If you want to write 10 int type data, the item
size will be 4 and the number of items will be
10 .

e fpis a FILE pointer .

Buffering

* A buffer is a block of memory used as a temporary storage
location for data read from and written to a file.

* Since disk drives are block-unit devices, they operate most
efficiently when input/output is performed in block units.

* Blocks of 1024 bytes are common.

Buffering

e fflush(fp);

 The contents of the buffer are written to a disk file .

« Setbuf(fp , NULL);

« setbuf () is a function that directly specifies the buffer of the stream.
If NULL is written in place of the buffer, it means that the buffer will
be removed.

* Practice binary with vsc

https://github.com/prof-kweon/C—-Language—Course/blob/main/3.Practice/file_binary.c

#include <stdio.h>

struct Data {

1

char c;
int i;
float f;

int writeFile() {

// "wb" = write binary
FILE *fp = fopen("data.bin", "wb");
if (fp == NULL) {
printf("Fail to open\n");
return 1;

}

struct Data d = { 'A', 100, 3.14f };

// save binary of structure
fwrite(&d, sizeof(struct Data), 1, fp);

fclose(fp);
printf("Complete writing.\n");
return 0;

int readFile() {

}

// "rb" = read binary
FILE *fp = fopen("data.bin", "rb");

if (fp == NULL) {
printf("Fail to open\n");

return 1;

}

struct Data d;

// read binary of structure

fread(&d, sizeof(struct Data), 1, fp);

printf("[read data]\n");
printf("\tchar: %c\n", d.c);
printf("\tint: %d\n", d.i);
printf("\tfloat: %.2f\n", d.f);

fclose(fp);
return 0;

void main()

{

int ret = writeFile();
if(ret == 0){
ret = readfFile();

if(ret == 0){
printf("SUCCESS!!");

} else {
printf("FAIL!!");

}

Lab: Image Copy files

* Here, we will write a program that copies binary files .

Image file name : dog.jpg
Image file copied as copy.jpg

hint

« To read or write a binary file, append “ b" to the file mode when
caIIing fopen () . To open a write-only file, use “ wb ” , and to open
a read-only file, use “rb " .

« src_file = fopen ("pome,jpg", " rb ");
« dst_file = fopen ("copy.jpg", " wb ");

« To read data from a binary file, use fread () .
 fread (buffer, 1, sizeof (buffer), src_file);

« To write data to a binary file, use fwrite () .
 fwrite (buffer, 1, sizeof (buffer), dst file);

« fread () returns the number of items successfully read , so if it
returhnst it can be considered that the end of the file has been
reached .

Example

#include < stdio.h >

int main(void)
{
FILE * src_file , * dst_file ;
char filename[100];
char buffer[1024];
int r_count ;

printf (" Image file name : ");

scanf ("%s" , filename);

src_file = fopen(filename, "rb");

dst_file = fopen ("copy.jpg”, "wb ");

if (src_file == NULL || dst_file == NULL) {
fprintf (stderr , " File open error \n");
return 1;

3

Example

while ((r_count = fread (buffer, 1, sizeof (buffer), src_file)) > 0) {
int w_count = fwrite (buffer, 1, r_count , dst_file);
if (w_count < 0) {
fprintf (stderr , " File writing error \n");
return 1;
3
if (w_count <r_count) {
fprintf (stderr , " Media write error \n");
return 1;

3
3
printf (" Image file copied as copy.jpg \n");
fclose (src_file);
fclose (dst_file);
return O;

Random access files

 Sequential access Method : How to read or write data sequentially
from the beginning of a file

* random access Method : How to read and write from any location
in the file

ANV ——

Principles of random access files

* File pointer : Indicates the current location of the file where
read and write operations are taking place.

file Pointer

1

« Forcibly moving the file pointer allows random access

CT 0)

int fseek(FILE ™*fp int 0419110,

reference position

constant value explanation

SEEK_SET 0 start of file

SEEK__CUR 1 Current location

SEEK_END 2 end of file

fseek ()

SEEK_SET SEEK_CUR /\SEEK_END
1 1 EOF ‘
fseek(fp,lz, SEEK_SET) fseek(fp, —1,ISEEK_END)

e rewind (fp): Initializes the file pointer to the
beginning .

ftell(), feof()

Svyntax: ftell
y O Returns the current position of the file pointer

KB long ftell(FILE *fp);

Syntax: foef() Returns whether the end of file has been reached

KB int feof(FILE *fp);

Mini Project: Creating an Address Book

* Let's write a simple program that can store and update information
about yourself and your friends.

 Data entered or updated is saved as a file.
Saved data can be searched .

* Let's create our own simple database system that will allow us
to store various things we need.

7
=

Execution results

2. Modification
3. Search

Integer value Enter : 1

Name : Hong Gil-dong

Address : 1 Jongno —gu, Seoul
Mobile phone : 010-1234-5678
Features : Superpower Superhero

hint

1. The suitable one is “ a+” mode . It is mainly for adding and exploring.
You must always use fseek () before reading from a file .

3. When making modifications, it is better to create a new file and rewrite the
entire thing there .

Example

#include < stdio.h >
#include < string.h >
#define SIZE 100
typedef struct person { // Represent contact information as a structure .
char name[SIZE]; // name
char address[SIZE]; // address
char mobilephone [SIZE]; // mobile phone
char desc [SIZE]; // Features
} PERSON;

void menu();

PERSON get_record ();

void print_record (PERSON data);
void add_record (FILE * fp);

void search_record (FILE * fp);
void update_record (FILE * fp);

int main(void)

{

FILE * fp ;

int select;

// Open the binary file in append mode .

if ((fp =fopen ("address.dat”, "a+")) == NULL) {
fprintf (stderr , " Cannot open file for input);

exit(1);
3
while (1) {
menu(); // Display the menu
printf (" Enter an integer value : "); // Get an integer from the user
scanf ("% d" ,&select);
switch (select) {
case 1: add_record (fp); break; // Add data
case 2: update_record (fp); break; // Modify data
case 3: search_record (fp); break; // Explore the data
case 4: return O;
}
3
fclose (fp); // Close the binary file
return 0;

// Receive data from the user and return it as a structure
PERSON get_record ()

{
PERSON data;
fflush (stdin); // Clear the standard input buffer
printf (" name); gets(data.name); // Enter
printf (" address); gets(data.address); // Enter
printf (" cell phone); gets(data.mobilephone); // Enter
printf (" Features); gets(data.desc); // Receive features
return data;
3

// Print the structure data to the screen .

void print_record (PERSON data)

{
printf("Name\n“, data.name); printf("Address\n” , data.address);
printf("Mobile phone\n", data.mobilephone); printf("Features\n” , data.desc);

// Function to display the menu on the screen
void menu()

d
printf ("====================\n");
printf (" 1. Add \n 2. Modify \n 3. Search \n 4. End \n");
printf ("====================\n");

3

// Add data

void add_record (FILE * fp)

{

PERSON data;
data = get_record (); // Receive data from the user and store it in a structure

fseek (fp, 0, SEEK_END); // go to the end of the file
fwrite (&data, sizeof (data), 1, fp); // Write structure data to a file

// Explore the data
void search_record (FILE * fp)
{
char name[SIZE];
PERSON data;
fseek (fp, 0, SEEK_SET); // go to the beginning of the file
fflush (stdin);
printf (" The name of the person you want to search for ");
gets(name); // Enter
while (! feof (fp)){ // repeat until the end of the file
fread (&data, sizeof (data), 1, fp);
if (strcmp (data.name, name) == 0){ // Compare names
print_record (data);
break;

3
3
// Modify data
void update_record (FILE * fp)

{
3

/...

