
Ch.15 File Input/Output

What you will learn in this chapter

•The concept of strips
•Standard Input/Output
•File Input/Output

• Input/output related
functions

Learn about

concepts and

functions

related to

input/output .

The concept of stream

• Stream : Thinking of input and output as a flow of bytes .

Streams and Buffers

• A stream contains a buffer by default .

Standard Input/Output Streams

Classification of input/output functions

Unformatted input/output
(character format)

Formatted input/output
(integer, real number etc)

Character input function

Character output function

Formatted input function

Formatted output function

string input function

string output function

Why do I need files?

The concept of a file

• A file in C is a series of contiguous bytes.

• All file data is eventually converted to bytes and stored in a file.

• It is entirely up to the programmer to interpret these bytes.

file

• A file contains 4 bytes, it can be interpreted as either integer
data of type int or real number data of type float.

file

0x36 0x34 0x31 0x0

One integer ?
One real nember ?

4 characters ?

text file

• A text file is a file that contains human-readable text.
• (Example) C program source file or notepad file

• Text files are saved using ASCII codes.

• A text file consists of consecutive lines.

text file

• Each operating system has a different way of displaying line breaks.

Text file in windows

• For example, in Windows, text files are saved as shown
in Figure 15-7 .

binary file

• Binary files are files that cannot be read by humans but can
be read by computers.

• A file that directly stores binary data.

• Binary files, unlike text files, are not separated into lines.

• All data is input/output without being converted to strings.

• Binary files can only be read by certain programs.

• (Example) C program executable file, sound file, image file

Overview of file processing

• When handling files, you must follow this order :

• Disk files are accessed using the FILE structure.

• A file pointer is a pointer to a FILE structure.

Open file

FILE structure

• fopen () creates a file with the given file name and returns a
FILE pointer .

struct _ iobuf {

char * _ptr ;

int _ cnt ;

char *_base;

int _flag;

int _file;

int _ charbuf ;

int _ bufsiz ;

char * _tmpfname ;

};

typedef struct _ iobuf FILE;

File Mode

Basic file mode

Read from the beginning of the file Write from the beginning of the file.
If the file exists, its existing contents
will be erased

Write from the beginning of the file.
If the file does not exists,
It is created.

Things to note

• You can append "t" or "b" to the basic file mode .

• "a" or "a+" mode is called append mode. When a file is opened
in append mode, all write operations occur at the end of the file.
Therefore, any existing data in the file is never erased.

• the "r+", "w+", or "a+" file mode is specified, both reading and
writing are possible. This mode is called update mode .
To switch from read mode to write mode, or from write mode to
read mode, you must call one of fflush(), fsetpos(), fseek(), or
rewind() .

Close file

Example
#include < stdio.h >

int main(void)

{

FILE * fp = NULL;

fp = fopen ("sample.txt" , "w");

if (fp == NULL)

printf (" file opening Failed \n");

else

printf (" file opening Success \n");

fclose (fp);

return 0;

}

File opening success

File deletion example

#include < stdio.h >

int main(void)

{

if (remove("sample.txt") == -1)

printf ("sample.txt cannot be deleted .\n");

else

printf ("sample.txt has been deleted .\n");

return 0;

}

sample.txt has been deleted .

Other useful functions

File input/output functions

Broadly speaking, it
can be divided into
text input/output

functions and binary
data input/output .

Character unit input/output

#include < stdio.h >

int main(void)

{

FILE * fp = NULL;

fp = fopen ("sample.txt" , "w");

if (fp == NULL)

printf (" file opening Failed \n");

else

printf (" file opening Success \n");

fputc ('a', fp);

fputc ('b', fp);

fputc ('c', fp);

fclose (fp);

return 0;

}

File open success

Character unit input/output

#include < stdio.h >

int main(void)

{

FILE * fp = NULL;

int c;

fp = fopen ("sample.txt" , "r");

if (fp == NULL)

printf (" file opening Failed \n");

else

printf (" file opening Success \n");

while ((c = fgetc (fp)) != EOF)

putchar (c);

fclose (fp);

return 0;

}

File open success
abc

must be declared as an integer
variable. The reason is explained
in the next slide .

EOF

• EOF(End Of File): A special symbol indicating the end of a file.

EOFprogram

…

fgetc
()

#define EOF (-1)

String unit input/output

How does fgets() know it's reading one line?
fgets(buffer, size, fp) reads characters
from a file until one of the following happens:

1. A newline character (\n) is read
2. size - 1 characters have been read

(to leave space for the null terminator)
3. End of File (EOF) is reached

So, it stops at the end of a line, meaning it reads one line at a time,
including the newline \n.

String unit input/output
#include < stdio.h >

#include < stdlib.h >

int main(void)

{

FILE *fp1, *fp2;

char file1[100], file2[100];

char buffer[100];

printf (" original file name : ");

scanf ("%s" , file1);

printf (" copy file name : ");

scanf ("%s" , file2);

// first The file Read In mode Open .

if ((fp1 = fopen (file1, "r")) == NULL)

{

fprintf (stderr , " original Cannot open file % s .\n" , file1);

exit(1);

}

String unit input/output

// second The file write In mode Open .

if ((fp2 = fopen (file2, "w")) == NULL)

{

fprintf (stderr , " copy Cannot open file % s .\n" , file2);

exit(1);

}

// first The file second To file Copy .

while (fgets (buffer, 100, fp1) != NULL)

fputs (buffer, fp2);

fclose (fp1);

fclose (fp2);

return 0;

}

Original file name: a.txt
Copy file name: b.txt

Lab: Finding a specific string in a file

• Let's write a program that searches for a specific string in a text
file. It takes the input text file name and the string to search for
from the user.

Enter the input file name : proverbs.txt
Enter the word you want to search for : man
proverbs.txt: 16 Behind every good man is a good woman.
proverbs.txt: 41 A dog is a man's best friend.
proverbs.txt: 57 Early to bed and early to rise makes a man healthy, wealthy, and
wise.

#include < stdio.h >

#include < string.h >

int main(void)

{

FILE * fp ;

char fname [128], buffer[256], word[256];

int line_num = 0;

printf (" Enter the input file name : ");

scanf ("%s" , fname);

printf (" Enter the word to search : ");

scanf ("%s" , word);

// Open the file in read mode .

if ((fp = fopen (fname , "r")) == NULL)

{

fprintf (stderr , " Cannot open file %s .\n" , fname);

exit(1);

}

while (fgets (buffer, 256, fp)) {

line_num ++;

if (strstr (buffer, word)) {

printf ("%s: %d word %s found .\n" , fname , line_num , word);

}

}

fclose (fp);

return 0;

}

Formatted Input/Output

Example
int main(void)

{

FILE * fp ;

char fname [100];

int number, count = 0;

char name[20];

float score, total = 0.0;

printf (" Grade file Name Enter : ");

scanf ("%s" , fname);

// Grades The file write In mode Open .

if ((fp = fopen (fname , "w")) == NULL)

{

fprintf (stderr , " grades Cannot open file % s .\n" , fname);

exit(1);

}

Example

// From the user Student number , name , and grades Input it In the file Save it.

while (1)

{

printf (" Student number , name , grade Please enter : (if negative end)");

scanf ("%d" , &number);

if (number < 0) break

scanf ("%s %f" , name, &score);

fprintf (fp , " %d %s %f" , number, name, score);

}

fclose (fp);

// Grades The file Read In mode Open .

if ((fp = fopen (fname , "r")) == NULL)

{

fprintf (stderr , " grades Cannot open file % s .\n" , fname);

exit(1);

}

Example
// from file Grades Read it The average Save .

while (! feof (fp))

{

fscanf (fp , "%d %s %f" , &number, name, &score);

total += score;

count++;

}

printf (" average = %f\n" , total/count);

fclose (fp);

return 0;

}

Enter the score file name : scores.txt
Enter your student number , name , and grade : (end if negative)1 KIM 10.0
Enter your student number , name , and grade : (end if negative)2 PARK 20.0
Enter your student number , name , and grade : (end if negative)3 LEE 30.0
Enter your student number , name , and grade : (end if negative) -1
Average = 20.000000

• Practice text with vsc

https://github.com/prof-kweon/C-Language-Course/blob/main/3.Practice/file_text.c

#include <stdio.h>
int writeFile(void)
{

FILE * fp = NULL;

fp = fopen ("sample.txt" , "w");
if (fp == NULL) {

printf ("file opening Failed \n");
}
else {

printf ("file opening Success \n");
}

// 1. save character
fputc ('a', fp);
fputc ('b', fp);
fputc ('c', fp);
fputc ('\n', fp);

// 2. save string
fputs("hello", fp);
fputs(" world\n", fp);

// 3. save number
fprintf(fp, "%d %d %d %.2f", 1, 2, 3,

3.14);

fclose (fp);
return 0;

}

int readFile() {
FILE *fp = fopen("sample.txt", "r"); // read mode

if (fp == NULL) {
printf("Fail to open\n");
return 1;

}

// 1. read 4 characters
char ch1 = fgetc(fp);
char ch2 = fgetc(fp);
char ch3 = fgetc(fp);
char ch4 = fgetc(fp);

// 2. read string (12 character "hello world\n"
// including white space)
char str1[10];
char str2[10];
fscanf(fp, "%s %s", str1, str2);

// 3. read 3 integers & 1 real number
int n1, n2, n3;
float f;
fscanf(fp, "%d %d %d %f", &n1, &n2, &n3, &f);

// print
printf("\n== readFile ==\n");
printf("Chars: %c %c %c %c", ch1, ch2, ch3, ch4);
printf("String: %s %s\n", str1, str2);
printf("Integers: %d %d %d\n", n1, n2, n3);
printf("Float: %.2f\n", f);

fclose(fp);
return 0;

}

int readFileByOne(void)
{

FILE * fp = NULL;
int c;
fp = fopen ("sample.txt" , "r");
if (fp == NULL)

printf ("file opening Failed \n");
else

printf ("file opening Success \n");

printf("\n== readFileByOne ==\n");
while ((c = fgetc (fp)) != EOF) {

putchar (c);
}
fclose (fp);
return 0;

}

int readFileByLine(void)
{

FILE * fp = NULL;
int SIZE = 100;
char line[SIZE];

fp = fopen ("sample.txt" , "r");
if (fp == NULL)

printf ("file opening Failed \n");
else

printf ("file opening Success \n");

printf("\n== readFileByLine ==\n");
while (fgets (line, SIZE, fp)) {

printf ("%s", line);
}
fclose (fp);
return 0;

}

void main()
{

writeFile();
readFile();
readFileByOne();
readFileByLine();

}

Writing and reading binary files

• Difference between text files and binary files
• Text file : All data is converted to ASCII code and saved.

• Binary file : Stores data exactly as it is represented on a computer.

Example of a binary file

• Image file or sound file

Write binary file

#include < stdio.h >

#define SIZE 5

int main(void)

{

int buffer[SIZE] = { 10, 20, 30, 40, 50 };

FILE * fp = NULL ;

fp = fopen (" binary.bin " , " wb "); // ①
if (fp == NULL)

{

fprintf (stderr , " binary.bin Cannot open file .");

return 1;

}

fwrite (buffer, sizeof (int), SIZE , fp); // ②

fclose (fp);

return 0;

}

Binary file mode

Write binary file

● buffer is the starting address of the memory

block that contains the data to be written to

the file .

● size is the size of the item being stored, in

bytes .

● count is the number of items you want to

store.

If you want to write 10 int type data, the item

size will be 4 and the number of items will be

10 .

● fp is a FILE pointer .

fwrite (buffer, size, count, fp

)

Reading binary files
#include < stdio.h >

#define SIZE 5

int main(void)

{

int i ;

int buffer[SIZE];

FILE * fp = NULL ;

fp = fopen (" binary.bin " , " rb ");

if (fp == NULL)

{

fprintf (stderr , " binary.bin Cannot open file .");

return 1;

}

fread (buffer, sizeof (int), SIZE , fp);

for (i = 0; i < SIZE ; i++)

printf ("%d " , buffer[i]);

fclose (fp);

return 0;

}

10 20 30 40 50

Reading binary files

● buffer is the starting address of the memory

block that contains the data to be written to

the file .

● size is the size of the item being stored, in

bytes .

● count is the number of items you want to store

. If you want to write 10 int type data, the item

size will be 4 and the number of items will be

10 .

● fp is a FILE pointer .

fread (buffer, size, count, fp

)

Buffering

• A buffer is a block of memory used as a temporary storage
location for data read from and written to a file.

• Since disk drives are block-unit devices, they operate most
efficiently when input/output is performed in block units.

• Blocks of 1024 bytes are common.

disk
file

Buff
er

Buffering

• fflush(fp);
• The contents of the buffer are written to a disk file .

• Setbuf(fp , NULL);
• setbuf () is a function that directly specifies the buffer of the stream.

If NULL is written in place of the buffer, it means that the buffer will
be removed.

• Practice binary with vsc

https://github.com/prof-kweon/C-Language-Course/blob/main/3.Practice/file_binary.c

#include <stdio.h>

struct Data {
char c;
int i;
float f;

};

int writeFile() {
// "wb" = write binary
FILE *fp = fopen("data.bin", "wb");
if (fp == NULL) {

printf("Fail to open\n");
return 1;

}

struct Data d = { 'A', 100, 3.14f };

// save binary of structure
fwrite(&d, sizeof(struct Data), 1, fp);

fclose(fp);
printf("Complete writing.\n");
return 0;

}

int readFile() {
// "rb" = read binary
FILE *fp = fopen("data.bin", "rb");

if (fp == NULL) {
printf("Fail to open\n");
return 1;

}

struct Data d;

// read binary of structure
fread(&d, sizeof(struct Data), 1, fp);

printf("[read data]\n");
printf("\tchar: %c\n", d.c);
printf("\tint: %d\n", d.i);
printf("\tfloat: %.2f\n", d.f);

fclose(fp);
return 0;

}

void main()
{

int ret = writeFile();
if(ret == 0){

ret = readFile();

if(ret == 0){
printf("SUCCESS!!");

} else {
printf("FAIL!!");

}
}

}

Lab: Image Copy files

• Here, we will write a program that copies binary files .

Image file name : dog.jpg
Image file copied as copy.jpg

hint

• To read or write a binary file, append “ b” to the file mode when
calling fopen () . To open a write-only file, use “ wb ” , and to open
a read-only file, use “ rb ” .

• src_file = fopen ("pome.jpg", " rb ");
• dst_file = fopen ("copy.jpg", " wb ");

• To read data from a binary file, use fread () .
• fread (buffer, 1, sizeof (buffer), src_file);

• To write data to a binary file, use fwrite () .
• fwrite (buffer, 1, sizeof (buffer), dst_file);

• fread () returns the number of items successfully read , so if it
returns 0 , it can be considered that the end of the file has been
reached .

Example

#include < stdio.h >

int main(void)

{

FILE * src_file , * dst_file ;

char filename[100];

char buffer[1024];

int r_count ;

printf (" Image file name : ");

scanf ("%s" , filename);

src_file = fopen(filename, "rb");

dst_file = fopen ("copy.jpg" , " wb ");

if (src_file == NULL || dst_file == NULL) {

fprintf (stderr , " File open error \n");

return 1;

}

Example

while ((r_count = fread (buffer, 1, sizeof (buffer), src_file)) > 0) {

int w_count = fwrite (buffer, 1, r_count , dst_file);

if (w_count < 0) {

fprintf (stderr , " File writing error \n");

return 1;

}

if (w_count < r_count) {

fprintf (stderr , " Media write error \n");

return 1;

}

}

printf (" Image file copied as copy.jpg \n");

fclose (src_file);

fclose (dst_file);

return 0;

}

Random access files

• Sequential access Method : How to read or write data sequentially
from the beginning of a file

• random access Method : How to read and write from any location
in the file

Principles of random access files

• File pointer : Indicates the current location of the file where
read and write operations are taking place.

• Forcibly moving the file pointer allows random access

file Pointer

fseek ()

fseek ()

● rewind (fp): Initializes the file pointer to the
beginning .

ftell(), feof()

Returns the current position of the file pointer

Returns whether the end of file has been reached

Mini Project: Creating an Address Book

• Let's write a simple program that can store and update information
about yourself and your friends.

• Data entered or updated is saved as a file.
Saved data can be searched .

• Let's create our own simple database system that will allow us
to store various things we need.

Execution results

====================
1. Add
2. Modification
3. Search
4. End
====================
Integer value Enter : 1
Name : Hong Gil-dong
Address : 1 Jongno -gu, Seoul
Mobile phone : 010-1234-5678
Features : Superpower Superhero

hint

1. The suitable one is “ a+” mode . It is mainly for adding and exploring.

2. You must always use fseek () before reading from a file .

3. When making modifications, it is better to create a new file and rewrite the
entire thing there .

Example

#include < stdio.h >

#include < string.h >

#define SIZE 100

typedef struct person { // Represent contact information as a structure .

char name[SIZE]; // name

char address[SIZE]; // address

char mobilephone [SIZE]; // mobile phone

char desc [SIZE]; // Features

} PERSON;

void menu();

PERSON get_record ();

void print_record (PERSON data);

void add_record (FILE * fp);

void search_record (FILE * fp);

void update_record (FILE * fp);

my
int main(void)

{

FILE * fp ;

int select;

// Open the binary file in append mode .

if ((fp = fopen ("address.dat" , "a+")) == NULL) {

fprintf (stderr , " Cannot open file for input);

exit(1);

}

while (1) {

menu(); // Display the menu

printf (" Enter an integer value : "); // Get an integer from the user

scanf ("% d" ,&select);

switch (select) {

case 1: add_record (fp); break; // Add data

case 2: update_record (fp); break; // Modify data

case 3: search_record (fp); break; // Explore the data

case 4: return 0;

}

}

fclose (fp); // Close the binary file

return 0;

}

// Receive data from the user and return it as a structure

PERSON get_record ()

{

PERSON data;

fflush (stdin); // Clear the standard input buffer

printf (" name); gets(data.name); // Enter

printf (" address); gets(data.address); // Enter

printf (" cell phone); gets(data.mobilephone); // Enter

printf (" Features); gets(data.desc); // Receive features

return data;

}

// Print the structure data to the screen .

void print_record (PERSON data)

{

printf("Name\n", data.name); printf("Address\n" , data.address);

printf("Mobile phone\n", data.mobilephone); printf("Features\n" , data.desc);

}

// Function to display the menu on the screen

void menu()

{

printf ("====================\n");

printf (" 1. Add \n 2. Modify \n 3. Search \n 4. End \n");

printf ("====================\n");

}

// Add data

void add_record (FILE * fp)

{

PERSON data;

data = get_record (); // Receive data from the user and store it in a structure

fseek (fp , 0, SEEK_END); // go to the end of the file

fwrite (&data, sizeof (data), 1, fp); // Write structure data to a file

}

// Explore the data

void search_record (FILE * fp)

{

char name[SIZE];

PERSON data;

fseek (fp , 0, SEEK_SET); // go to the beginning of the file

fflush (stdin);

printf (" The name of the person you want to search for ");

gets(name); // Enter

while (! feof (fp)){ // repeat until the end of the file

fread (&data, sizeof (data), 1, fp);

if (strcmp (data.name, name) == 0){ // Compare names

print_record (data);

break;

}

}

}

// Modify data

void update_record (FILE * fp)

{

//...

}

Q & A

