
Ch.17 Dynamic Memory
and Linked Lists

What you will learn in this chapter

•Understanding dynamic memory allocation
•Functions related to dynamic memory
allocation
•linked list Understand the

concept of dynamic

memory allocation

and learn linked

lists as an

application .

Concept of dynamic allocation memory

• How a program allocates memory
• Static allocation

• dynamic allocation

Static memory allocation

• Static memory allocation
• Allocating a predetermined amount of memory before the program starts.

• The size of the memory is determined before the program starts.

• (Example) int score_s [100];

• If an input larger than the initially determined size comes in, it cannot be
processed.

• If a smaller input comes in, the remaining memory space is wasted.

Dynamic memory allocation

• Dynamic memory allocation
• Dynamically allocating memory during execution

• Return memory to the system when finished using it

• score = (int *) malloc(100* sizeof (int));

• Allocate only as much as you need and use memory very efficiently.

Dynamic memory allocation procedure

Dynamic memory allocation

malloc() return value must be checked

Dynamic Memory usage

• How to use the allocated space?

• First method : Using pointers
• * score = 100;

• * (score+1) = 200;

• * (score+2) = 300;

• ...

• Second method : Treat dynamic memory like an array
• score[0] = 100;

• score[1] = 200;

• score[2] = 300;

• ...
score

??300200100

…

Dynamic memory return

Example

• Allocates space to store one integer, one real number, and
one character, uses it, and then returns it .

#include < stdio.h >

#include < stdlib.h >

int main(void)

{

int *pi;

double *pf;

char *pc;

pi = (int *)malloc(sizeof (int));

pf = (double *)malloc(sizeof (double));

pc = (char *)malloc(sizeof (char));

if (pi == NULL || pf == NULL || pc == NULL) {

// The return value is NULL cognition check

printf (" Dynamic memory allocation error \n");

exit(1);

}

Example

*pi = 100; // pi[0] = 100;

*pf = 3.14; // pf[0] = 3.14;

*pc = 'a'; // pc[0] = 'a';

free(pi);

free(pf);

free(pc);

return 0;

}

Example #2

Dynamic memory allocation

Dynamic memory freeing

⚫ Let's create a dynamic memory that can store the integers 10, 20, and 30 .

Practice

End

Lab: Processing Using Dynamic Arrays

• Let's say you're writing a grade processing program. It asks the user
how many students there are and allocates appropriate dynamic
memory. It gets the grades from the user, stores them, and
then prints them out .

Number of students : 3
Student #1 Grade : 10
Student #2 Grade : 20
Student #3 Grade : 30
Grade average = 20.00

Solution
#include < stdio.h >

#include < stdlib.h >

int main(void)

{

int *list;

int i, students, sum=0;

printf (" Number of students : ");

scanf ("%d" , &students);

list = (int *)malloc(students * sizeof (int));

if (list == NULL) { // The return value is NULL cognition check

printf (" Dynamic memory allocation error \n");

exit(1);

}

Solution

for (i = 0; i<students; i++) {

printf (" Student #%d grade : " , i+1);

scanf ("%d" , &list[i]);

}

for (i = 0; i<students; i++)

sum += list[i];

printf (" Grade average =%.2f \n" , (double)sum/students);

free(list);

return 0;

}

calloc()

• calloc() allocates memory initialized to 0.

• calloc() allocates memory on an item-by-item basis.

• (Example)
int *p;

p = (int *) calloc (5, sizeof (int));

p
??????

malloc()

p

calloc()

000000

realloc()

▪ The realloc() function changes the size of an allocated memory
block.

▪ (Example)
int *p ;

p = (int *) malloc (5 * sizeof (int)));

p = realloc (p, 7 * sizeof (int)));

p

realloc
()

924751 ??

p

malloc()

924751

Tip

Let's create a structure dynamically .

• Allocate space to store the structure and use it .

struct Book {

int number;

char title[50];

};

struct Book *p;

p = (struct Book *)malloc(2 * sizeof (struct Book));

Example#include < stdio.h >

#include < stdlib.h >

#include < string.h >

struct Book {

int number;

char title[50];

};

int main(void)

{

struct Book *p;

p = (struct Book *) malloc (2 * sizeof (struct Book));

if (p == NULL) {

printf (" Memory allocation error \n");

exit(1);

}

p[0].number = 1;

strcpy (p[0].title, "C Programming");

p[1].number = 2;

strcpy (p[1].title, "Data Structure");

free(p);

return 0;

}

Allocating an array of structures

Array vs Linked List

• array

• Pros : Simple and fast to implement.

• Disadvantage : The size is fixed. It is difficult to insert or delete in the middle.

Array vs Linked List

• linked list

• Each item uses a pointer to point to the next item .

• Random access is difficult .

• It is widely used to implement

Insert operation in linked list

• or delete data in the middle .

Delete operation in linked list

• or delete data in the middle .

Structure of a linked list

• Node = data field + link field

Data Fields

• The data field contains the data we want to store. The data can
be an integer or it can be complex data such as a structure
containing a student number, name, and phone number.

Structure of a linked list

• Head pointer : A pointer pointing to the first node.

Create a node

• Nodes are created dynamically .

Self-referential structure

• A self -referential structure is a special structure that has a
pointer to a structure of the same type among its members.

typedef struct NODE {

int data;

struct NODE *link;

} NODE;

Creating a simple linked list

NODE* p1;
p1 = (NODE*)malloc(sizeof (NODE));

p1->data = 10;
p1->link = NULL ;

NODE* p2;
p2 = (NODE*)malloc(sizeof (NODE));
p2->data = 20;
p2->link = NULL ;
p1->link = p2;

free(p1);
free(p2);

p1

10 NULLp1

10p1 20 NULL

10p1 20 NULL

Note : Manual memory management vs
automatic memory management

• C language presents several problems.
• You can forget to free memory. If you don't free memory after you're done

using it, you can end up with a memory leak.
• It can free memory too soon. This means freeing memory that is in use by

someone else. This can cause the program to terminate if it tries to access
a memory value that does not exist.

• Because this problem was undesirable, modern languages added
automatic memory management : a garbage collector took care of it.

• Automatic memory management offers many benefits to programmers.
However, automatic memory management comes at a cost.
In many programming languages with automatic memory management,
all execution stops while the garbage collector searches for and deletes
objects to collect.

• However, for long-running applications where performance is critical,
manual memory management is still used. The most representative
languages are the C and C++ languages that we are learning .

Q & A

http://www.google.co.kr/url?sa=i&rct=j&q=end+of+movie&source=images&cd=&cad=rja&docid=xULA5c5sFCje4M&tbnid=UUDGLXZGSp6qtM:&ved=0CAUQjRw&url=http://www.freedigitalphotos.net/images/Movies_Theater_and_C_g202-The_End_Of_The_Movie_p80657.html&ei=b_4pUbHkA8f0igLyuYAg&bvm=bv.42768644,d.cGE&psig=AFQjCNEkUl4k86xXS0G7fdU8yOeCQi44BQ&ust=1361792984057162
http://www.google.co.kr/url?sa=i&rct=j&q=thank+you&source=images&cd=&cad=rja&docid=gbEJBfVIbxET7M&tbnid=KzsG6LBzP3ej1M:&ved=0CAUQjRw&url=http://braemarfsc.org/2012/12/26/2082/&ei=r_4pUcw6w-6JAo65gYAC&bvm=bv.42768644,d.cGE&psig=AFQjCNFkOIhNNHPgmfhRH0faI_lKEaSx1A&ust=1361793041936818

