Ch.17 Dynamic Memory
and Linked Lists

What you will learn in this chapter

*Understanding dynamioymmemory allocation
*Functions related to dynawic memory
allocation
|inked list

Understand the
concept of dynamic
memory allocation
and learn linked
lists as an
application .

Concept of dynamic allocation memory

* How a program allocates memory
« Static allocation
« dynamic allocation

Static memory allocation

e Static memory allocation

* Allocating a predetermined amount of memory before the program starts.
* The size of the memory is determined before the program starts.

* (Example) int score_s [100];

« If an input larger than the initially determined size comes in, it cannot be
processed.

« If a smaller input comes in, the remaining memory space is wasted.

Dynamic memory allocation

* Dynamic memory allocation
« Dynamically allocating memory during execution
« Return memory to the system when finished using it
e score = (int *) malloc(100* sizeof (int));
* Allocate only as much as you need and use memory very efficiently.

operating system

I lﬁa,

request

int main(void)

{
int *score;
score=(int)malloc(100*size(int));

} 7

program

Dynamic memory allocation procedure

Requires 1 Please be sure to Returns dynamically thank you
byte of dynamic memory. return it after use. allocated memory.

Dynamic memory usage Dynamic memory release

Dynamic memory allocation

(p =) (int *)malloc(100*sizeof(int)); // Allocate 100 integers

400 bytes of memory

malloc() return value must be checked

int *Score' convert to int pointer
>
score = kint *Imalloc(100*sizeof(int));

__— Check if memory is allocated correctly

. [l error handling

if(score == NULL){

1}

£ 7 ST S S S

.
score

Dynamic Memory usage

« How to use the allocated space?

* First method : Using pointers
« * score = 100;
e * (score+1) = 200;
e * (score+2) = 300;
« Second method : Treat dynamic memory like an array
» score[0] = 100;
* score[1] = 200;

* score[2] = 300; T

‘ 100 200 300
score

Dynamic memory return

score = (int *)malloc(100*sizeof(int));

}/a Returns the dynamic memory pointed to by score.

(free(score);

Example

* Allocates space to store one integer, one real number, and
one character, uses it, and then returns it .

#include < stdio.h >
#include < stdlib.h >

int main(void)

{
int *pi;
double *pf;
char *pc;

p1 = (int *)malloc(sizeof (int));

pf = (double *)malloc(sizeof (double));

pc = (char *)malloc(sizeof (char));

if (p1 == NULL | | pf == NULL | | pc == NULL) {
/I The return value 1s NULL cognition check
printf (" Dynamic memory allocation error \n");
exit(1);

Example

*p1=100; // p1[0] = 100;
*pf = 3.14; // pf[0] = 3.14;

— P N

*pc ="'a'; // pc[0] ='a’;

free(pi);
free(pf);
free(pc);
return O;

Example #2 .

e Let's create a dynamic memory that can store the integers 10, 20, and 30 .

#include < stdio.h >
#include < stdlib.h >
int main(void)

{

int *list: Dynamic memory allocation

list = (int *) malloc (3 * sizeof (int));
if (list == NULL) { // The return value is NULL cognition check
printf (" Dynamic memory allocation error \n");
exit(1);

3

list[0] = 10;

list[1] = 20;

list[2] = 30;

free(list); Dynamic memory freeing

return O;

Lab: Processing Using Dynamic Arrays

e Let's say you're writing a grade processing program. It asks the user
how many students there are and allocates appropriate dynamic
memory. It gets the grades from the user, stores them, and
then prints them out .

Number of students : 3
Student #1 Grade : 10
Student #2 Grade : 20

Student #3 Grade : 30
Grade average = 20.00

Solution

#include < stdio.h >
#include < stdlib.h >

int main(void)
{
int *list;
int 1, students, sum=0;

printf (" Number of students : ");
scanf ("%d" , &students);

list = (1int *)malloc(students * sizeof (int));

if (list == NULL) {// The return value is NULL cognition check
printf (" Dynamic memory allocation error \n");
exit(1);

Solution

for (i = 0; i<students; i++) {

printf (" Student #%d grade : ", 1+1);
scanf ("%d" , &list[1]);

;

for (1 = 0; i<students; 1++)
sum += list[1];

printf (" Grade average =%.2f \n" , (double)sum/students);
free(list);
return O;

calloc()

» calloc() allocates memory initialized to O.
» calloc() allocates memory on an item-by-item basis.

* (Example)
int *p;
p = (int *) calloc (5, sizeof (int));

malloc()

TorEhey

calloc()

s OPppps

realloc()

= The realloc() function changes the size of an allocated memory
block.

= (Example)
int *p ;
p = (int *) malloc (5 * sizeof (int)));
p = realloc (p, 7 * sizeof (int)));

malloc()

s Oepesp

realloc

£ OPPERPLT

What happens if you don't return dynamic memory?

Dynamic memory is not released unless the programmer explicitly returns it. The operating system reserves a certain
portion of memory as a heap and allocates dynamic memory from it. Therefore, dynamic memory has a fixed size, so if
a certain program uses a lot of it, other programs will be restricted. In fact, if dynamic memory is not returned, the entire
program gradually slows down.

The worst case scenario is to keep allocating and never returning anything. This can cause the operating system to

crash. The code below is very wrong.

void sub()

{
int *p;
p = malloc(100 * sizeof(int));
(p = malloc(100 * sizeof(int));|

The address to the previous memory block disappears.

return;

Let's create a structure dynamically .

* Allocate space to store the structure and use it .

struct Book {
int number;
char title[50];

&

struct Book *p;
p = (struct Book *)malloc(2 * sizeof (struct Book));

/ number

title

I:_#include < stdio.h >
#include < stdlib.h >
#include < string.h >
struct Book {
int number;
char title[50];

5

int main(void)

{

struct Book *p;

p = ([struct Book *) malloc (2 * sizeof (struct Book));

if (p == NULL) T
printf (" Memory allocation error \n");
exit(1);
3
p[0].number = 1;
strcpy (p[0].title, "C Programming”);
p[1].number = 2;
strcpy (p[1].title, "Data Structure”);
free(p);
return O;

Allocating an array of

[struc

Array vs Linked List

* array
* Pros : Simple and fast to implement.
 Disadvantage : The size is fixed. It is difficult to insert or delete in the middle.

Array vs Linked List

* linked list
« Each item uses a pointer to point to the next item .
« Random access is difficult .
e It is widely used to implement

main memory

Insert operation in linked list

e or delete data in the middle .

Delete operation in linked list

e or delete data in the middle .

Structure of a linked list

 Node = data field + link field

A node in a linked list

consists of a data field and a
link field.

data | link¢’

N
JACAS

4 b

Data Fields

 The data field contains the data we want to store. The data can
be an integer or it can be complex data such as a structure
containing a student number, name, and phone number.

data field link field
(A V_Aﬂ
id « |
id name | «
id | name | phone | ¢

Structure of a linked list

« Head pointer : A pointer pointing to the first node.

The pointer pointing to the first node

is called the head pointer, and the

" oy (o) link field of the last node is NULL.

pliste—>{ 10 20 30 « 40 « 50 [NULL

Create a node

* Nodes are created dynamically .

plist e—>

10

30

40

50

NULL

Self-referential structure

* A self -referential structure is a special structure that has a
pointer to a structure of the same type among its members.

typedef struct NODE {
int data;

struct NODE *link;

} NODE;

Ia k.

Creating a simple linked list

NODE* p1;

p1 = (NODE*)malloc(sizeof (NODE));
= (T

p1->data = 10;

p1->link = NULL ;

i " (10 [

NODE* p2;

p2 = (NODE*)malloc(sizeof (NODE));

p2->data = 20;

p2->link = NULL ; PR PR
p1->link = p2; et
free(p1)

p1);
free(p2);

Note : Manual memory management vs
automatic memory management

 C language presents several problems.

* You can forget to free memory. If you don't free memory after you're done
using it, you can end up with a memory leak.

* It can free memory too soon. This means freeing memory that is in use by
someone else. This can cause the program to terminate if it tries to access
a memory value that does not exist.

* Because this problem was undesirable, modern languages added
automatic memory management : a garbage collector took care of it.

 Automatic memory management offers many benefits to programmers.
However, automatic memory management comes at a cost.
In many programminlg languages with automatic memory management,
all execution stops while the garbage collector searches for and deletes
objects to collect.

« However, for long-running applications where performance is critical,
manual memory management is still used. The most representative
languages are the C and C++ languages that we are learning .

http://www.google.co.kr/url?sa=i&rct=j&q=end+of+movie&source=images&cd=&cad=rja&docid=xULA5c5sFCje4M&tbnid=UUDGLXZGSp6qtM:&ved=0CAUQjRw&url=http://www.freedigitalphotos.net/images/Movies_Theater_and_C_g202-The_End_Of_The_Movie_p80657.html&ei=b_4pUbHkA8f0igLyuYAg&bvm=bv.42768644,d.cGE&psig=AFQjCNEkUl4k86xXS0G7fdU8yOeCQi44BQ&ust=1361792984057162
http://www.google.co.kr/url?sa=i&rct=j&q=thank+you&source=images&cd=&cad=rja&docid=gbEJBfVIbxET7M&tbnid=KzsG6LBzP3ej1M:&ved=0CAUQjRw&url=http://braemarfsc.org/2012/12/26/2082/&ei=r_4pUcw6w-6JAo65gYAC&bvm=bv.42768644,d.cGE&psig=AFQjCNFkOIhNNHPgmfhRH0faI_lKEaSx1A&ust=1361793041936818

