
Ch.3 C Program Components

What you will learn in this chapter

* annotation
* Variables, constants
* Function
* sentence
* Output function printf()
* Input function scanf()
* Arithmetic operations
* Assignment operation

General program form

• receiving data (input stage),

• processing the data (processing stage)

• and then displaying the results on the screen (output stage) .

Addition Program #1

Sum of two numbers : 300

Comment​

/* Program to calculate the sum of two numbers * /

#include <stdio.h>

int main(void)

{

int x; // variable to store the first integer

int y; // variable to store the second integer

int sum; // Variable that stores the sum of two integers

x = 100;

y = 200;

sum = x + y;

printf("Sum of two numbers : %d" , sum);

return 0;

}

Comments are text

that explains the

code.

2 ways to comment

/* single line comment * /

/* several

In a line

Comment done* /

// This entire line is a comment .

int x; // From here to the end of the line is a comment .

The importance of comments

• When someone else looks at the program, it is much easier
to understand the contents of the program if there are
comments. If a lot of time has passed, even the creator may
not
remember the contents well.

• A good comment does not repeat or explain the code.
It should clearly state the intent of the code.

Annotation style

/*

File name : add.c

Description : Program to add two numbers

Author : Hong Gil-dong

* /

/**************************************

* File name : add.c

* Description : Program to add two numbers

* Author : Hong Gil-dong

************************************* /

Indentation

• Indentation : Indenting sentences on the same level a few characters
from the left end.

Without comments and indentation ..

#include < stdio.h >

int main(void) {

int x; int y; int sum; x = 100; y = 200; sum = x + y;
printf (" Sum of two numbers : %d" , sum); return
0;

}

Running is However,

it is difficult to know what

kind of processing the

program is doing, and it is

also difficult to distinguish

sentences on the same

level because there is no

indentation.

Preprocessor

#include <stdio.h>

• Preprocessor

Starts with a symbol

• stdio.h contains definitions of

library functions for standard

input and output .

Preprocessor

/* First program * /

int main(void)

{

printf ("Hello World!");

return 0;

}

#include < stdio.h >

// stdio.h

…

int printf (char *,…);

…

stdio.h

hello.c

Function

• Function : A set of processing steps that perform a specific
function, grouped in parentheses and named accordingly.

• Functions are the basic units that make up a program.

output

What's inside the function

Q) So what is inside the function ?

A) Inside the function, the
processing steps (
statements) that the
function processes are
listed in curly brackets.

Structure of a function

Function

• The statement that performs the task must be placed inside
a function.

return statement

• return is a keyword that returns a value while terminating a function .

• To return a value, write the return value after return .

#include < stdio.h >

int main(void) {

…

…

return 0;

}

Who will call main() ?

Variable

• Memory space used for temporarily storing data used by
a program.

Why are variables needed?

• Variables serve to temporarily store data values .

Types of variables

• A variable can be thought of as a box that holds data .

2
data

x

The name
of the

variable

The name of
the variable

Data type

int x ;

Types of variables

• Variables have several types depending on the type of data .

http://www.google.co.kr/url?sa=i&rct=j&q=starbucks+cup+size&source=images&cd=&cad=rja&docid=fQjYD4AsMh8WNM&tbnid=e75Gos5O66sZ-M:&ved=0CAUQjRw&url=http://www.foodiggity.com/starbucks-goes-big-gulp-with-the-31-oz-trenta-size/&ei=likjUazyKrH4igKQt4CABw&bvm=bv.42661473,d.cGE&psig=AFQjCNENbkdKavSStydacWvbNQSYiP4sQQ&ust=1361345299815107

Data type

• It specifies whether the data to be stored in the variable is
an integer, a real number, or some other data.

• Data types include integers, floating point numbers (real
numbers), and character types.

Declaring variables

• Variable declaration : Telling the compiler in advance what type
of variable will be used.

Declaring variables

Declaring variables

int x ; // first Integer Save Variable

int y ; // second Integer Save Variable

int sum; // two Integrity Sum Save Variable

x y sum

each Variables can store integers.

A variable is created in the memory space
It is named.

Declaring multiple variables on one line

int x, y, sum; // possible !!

x y sum

each Variables can store integers.

A variable is created in the memory
space

It is named.

Name of variable

• Identifier : The programmer can name variables as he pleases ,
but he must follow some rules. Just as names such as “ Hong Gil-
dong” and “ Kim Young-hee” identify people, variable names
identify variables.

Name of variable

• Rules for creating
• Identifiers consist of English letters, numbers , and the underscore

character _ .

• There must be no spaces in the middle of the identifier .

• The first character of an identifier must be a letter or the
underscore symbol _ . An identifier cannot start with a number .

• Uppercase and lowercase letters are distinguished . Therefore, the
variables index , Index, and INDEX are all different variables .

• Identifiers that are identical to keywords in the C language are not
allowed .

int sub(void)

{

int x;

}

Variable

name

Function

name

Keyword

• Keyword : A special word that has its own meaning in the C
language . Also called reserved words.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

The name of the variable

• sum // Starts with an English alphabet letter

• _count // can start with an underscore character .

• number_of_pictures // You can put an underscore character in the
middle .

• King3 // You can also put numbers in, as long as it's not the very first
one .

• 2nd_base(☓) // Cannot start with a number .

• money# // Symbols such as # cannot be used .

• double // double is a keyword in the C language .

Good variable names

• You should choose a name that best describes the role of
the variable.

• i , j, k (X)

• year, month, date (O)

• How to create a multi-word name
• underscore Method : bank_account

• Capitalize the first letter of the word : BankAccount

a, b, c, d,… number, average,

sum,…

Initialization of variables

• You can give initial values to variables .

• int x = 10;

• int y = 20;

• int sum = 0;

• If the variables are of the same type , you can declare and initialize them on
the
same line.

• int width = 100, height = 200;

• Initializing as follows is not syntactically incorrect, but should be avoided :
• int width, height = 200;

“width” is not initialized.

formula

• Expression : Operands and Operators consisting of
expression

• A formula has a result .

Formula when x is 3

The value of x 2 - 5x + 6

Calculate.

int x, y;

x = 3;

y = x * x - 5 * x + 6;

printf (“%d\n”, y);

10
0

Storing values in variables

• Assignment operation : An operation that stores a value in a variable.

• Assignment operation : =

x = 100;

= ;100x

various Assignment operation

• A variable can store a value using the = symbol, and the
value of the variable can be changed as many times as you
like .

• Variables can also be assigned the values of other variables .

Arithmetic operations

• Arithmetic operators are similar to the operation symbols
commonly used in mathematics .

Arithmetic operations

= +

300

sum
200

y

100
x

sum = x + y;

Organize

Library functions

• Library functions : Library functions are functions that the
compiler provides for programmers to use.

• printf(): Standard output function for printing to the monitor.

• scanf(): Standard input function for input from the keyboard.

String output

printf ("Hello World!\n ");

string : “Hello World!\n” and

A list of several characters

together

Hello World!

Output variable values

printf (“Sum of two numbers : %d \n, sum");

Output Format

Sum of two
numbers : 30

Format specifier

• Format specifier : Specifies the format in which values are
printed in printf().

Output as a decimal integer

Output as a float

Output as a character

Output as a string

Output multiple variable values

• You can think of it as the value of the variable being substituted
in the place of the format specifier and then printed.

The number of the format specifier

and the variables must be equal.

Caution !

• The data types of the format and variables must match.

The type of the format specifier

and the variable must be

the same.

Field width and precision

• When printing using printf(), you can specify the size of the
field in which data is printed.

Lab: Four basic arithmetic calculation

• Stores 20 and 10 in variables x and y, calculates x+y, x-y, x*y,
x/y, stores them in variables, and prints these variables on the
screen.

Sum of two numbers : 30
Difference between two numbers : 10
Product of two numbers : 200
The share of two : 2

Solution

// Program to calculate addition, subtraction, multiplication and division between integers

#include < stdio.h >

int main(void)

{

int x; // variable to store the first integer

int y; // variable to store the second integer

int sum, diff, mul , div; // Variables that store the results of operations between two

integers

x = 20; // store 2 in variable x

y = 10; // store

sum = x + y; // Store the result of (x + y)

diff = x - y; // Store the result of (x – y)

mul = x * y; // variable Store the result of (x * y)

div = x / y; // Store the result of (x / y)

Solution

printf (" Sum of two numbers : %d\n" , sum); // Print the value of sum

printf (" Difference between two numbers : %d\n" , diff); // Print the value of diff

printf (" Product of two numbers : %d\n" , mul); // variable Print the value of mul

printf (" Quotient of two numbers : %d\n" , div); // Print the value of div

return 0;

}

scanf()

• Gets a value from the keyboard and stores it in a variable.

• Requires the address of the variable .

scanf (“%d”, &x);

The value will be saved at

address of the variable.
Format specifier

Why do I need an address?

• When we buy a product on the Internet and have it delivered
to our home, we have to tell the shopping mall our address .

& x The & operator calculates

the address of a variable .

Format specifiers for scanf ()

• Mostly it is similar to printf().

scanf()

The number of the format specifier

and the variables must be equal.

Addition Program #2

• Let's get input from the user .

Enter the first number : 10
Enter the second number : 20
Sum of two numbers : 30

Algorithm

Second addition program
// Calculate and output the sum of

#include < stdio.h >

int main(void)

{

int x; // variable to store the first integer

int y; // variable to store the second integer

int sum; // Variable to store the sum of two integers

printf (" Enter the first number : "); // Output input guidance message

scanf ("%d" , &x); // Receive an integer and store it in

printf (" Enter the second number : "); // Output input guidance message

scanf ("%d" , &y); // Receive an integer and store it in

sum = x + y; // Add two variables .

printf (" Sum of two numbers : %d" , sum); // Print the value of sum in decimal

return 0; // return 0 to the outside

}

Circle Area Calculation Program

• It receives the radius of a circle from the user, calculates the
area of the circle, and then displays it on the screen .

Enter radius : 10.0
Area of a circle : 314.000000

Circle Area Calculation Program

#include < stdio.h >

int main(void)

{

float radius; // radius of the circle

float area; // area

printf (" Enter the radius : ");

scanf ("%f" , &radius);

area = 3.14 * radius * radius;

printf (" Area of the circle : %f\n" , area);

return 0;

}

Currency conversion program

• Let's write a program that converts the won input by the user
into dollars and outputs it .

Enter the exchange rate : 1400
Enter the amount in Won : 1000000
1,000,000 Won is equal to 714.285,714 US Dollars .

/* Program to calculate exchange rates * /

#include < stdio.h >

int main(void)

{

double rate; // won / dollar exchange rate

double usd ; // dollar

int krw ; // Won is declared as an integer variable

printf (" Enter the exchange rate : "); // Input guidance message

scanf ("%lf" , &rate); // Input exchange rate

printf (" Enter the amount in Korean Won : "); // Input guidance message

scanf ("%d" , &krw); // Enter the amount in Korean Won

usd = krw / rate; // Convert to dollar

printf (" %d won is %lf dollar .\n" , krw , usd); // Print calculation result

return 0; // Return the function result value

}

Program to calculate average

• Write a program that receives three double type real
numbers from the user, calculates the sum and average, and
displays them on the screen.

Enter 3 numbers : 10.2 21.5 32.9
Total =64.60
Average =21.53

Program to calculate average

#include < stdio.h >

int main(void)

{

double num1, num2, num3;

double sum, avg;

printf (" Enter 3 real numbers : ");

scanf ("% lf % lf % lf " , &num1, &num2, &num3); // Input 3 real numbers

sum = num1 + num2 + num3;

avg = sum / 3.0;

printf (" total = %.2lf\n" , sum); // Display decimal point with 2 digits

printf (" average =%.2lf\n" , avg);

return 0;

}

Q & A

