
Ch.4 Variables and Data Types

What you will learn in this chapter

* Understanding the concept of variables and constants

* Data type

* Integer

* Real number

* Text type

* Use symbolic constants

* Overflow and Understanding Underflow

Variable

• Computer programs use variables to store values.

• Variables can be used to store scores in a game, or to store
the prices of items we purchased at a supermarket.

Why do we need variables ? #1

• A place to store data received from users. – If there are no
variables, where will the data received from users be stored?

In order to calculate the average of

The grades, the grades must first

be stored somewhere.

Average

Why do we need variables ? #2

Which code is more
flexible?

Can you adapt better to
change?

Variables and Constants

• Variable : A space where the stored value can be changed.

• Constant : A space where the stored value cannot be changed

(Example) 3.14, 100, 'A', “Hello World!”

variable constant

Example : Variables and Constants

/* Program to calculate the area of a circle * /
#include < stdio.h >
int main(void)
{

float radius; // Radius of the circle
float area; // Area of a circle

printf (" Enter the area of the circle :");
scanf ("%f" , &radius);

area = 3.141592 * radius * radius;
printf (" Area of the circle : %f \n" , area);

return 0;
}

Variable

constant

Data type

• type (kind) of data

• short, int, long: integer data (100)

• double, float: floating point data (3.141592)

• char: character data ('A', 'a', ' han ')

Integer type float typeinteger type character type

Decimal , octal , hexadecimal​

• Octal
• 012 8 =1×8 1 +2×8 0 =10

• Hexadecimal
• 0xA 16 =10×16 0 =10

Terminology (Data type)

• 42 (decimal integer), 0x2A (hexadecimal integer), 052 (octal integer)

- Decimal (base 10): 42

- Hexadecimal (base 16): 0x2A

- Octal (base 8): 052

- All represent the same value → 42 in decimal

Why we need different data types

• It's like storing things in boxes.

Classification of data types

• Data types can be broadly divided into integer types, floating-point
types, and character types.

Data type

integer type Floating point type character type

Size of Data type

• To find out the size of a data type, use “sizeof” operator.
sizeof is an operator that returns the size of a variable or data
type in bytes.

Example : Size of data type

#include <stdio.h>

int main(void)
{

int x;

printf (" Size of variable x : %d\n" , sizeof (x));

printf ("Size of char type : %d\n" , sizeof (char));
printf ("Size of int type : %d\n" , sizeof (int));
printf ("Size of short type : %d\n" , sizeof (short));
printf ("Size of long type : %d\n" , sizeof (long));
printf ("Size of float type : %d\n" , sizeof (float));
printf ("Size of double type : %d\n" , sizeof (double));

return 0;
}

Size of variable x : 4
char type : 1
Size of int type : 4
Short type size : 2
Long type size : 4
Size of float type : 4
Double type size : 8

Integer

Why are there so many different types
of integers in C?

• The idea is to allow programmers to select and use them
according to their intended use.

• The number of bits can expand the range of integers, but requires
more memory space.

Integer type range

• int type

• short type

• long type

• Usually the same as int type

About -2.1

billion to +2.1

billion

Model Typical Architecture int long pointer long long

ILP32 32-bit systems (Win32, x86) 4 4 4 8

LP64 64-bit UNIX/Linux/macOS 4 8 8 8

LLP64 64-bit Windows (MSVC, MinGW) 4 4 8 8

Example
/* Program to calculate the size of an integer data type * /

#include < stdio.h >

int main(void)

{

short year = 0; // Initialize to 0 .

int sale = 0; // Initialize to 0 .

long total_sale = 0; // Initialize to 0 .

long long large_value ; // 64 bit data type

year = 10; // Be careful not to exceed about 32,000

sale = 200000000; // Be careful not to exceed about 2.1 billion

total_sale = year * sale; // Be careful not to exceed about 2.1 billion

printf ("total_sale = %d\n" , total_sale);

return 0;

}

total_sale = 200000000

signed, unsigned modifiers

• unsigned
• Means that only non-negative values are represented

• unsigned int

• signed
• Means that it represents a value with a sign

• Commonly omitted

unsigned int

unsigned int speed; // unsigned int type

unsigned distance; // unsigned int distance and It's the same .

unsigned short players; // unsigned short type

unsigned int sales = 2800000000; // about 2.8 billion

printf (“%u \n” , sales); // If you use %d , it will be printed as a negative number

unsigned uses

%u to print it out .

unsigned example

// 2800000000 = 1010 0110 1110 0100 1001 1100 0000 0000 (4 bytes)
// https://www.rapidtables.com/convert/number/binary-to-decimal.html

Overflow
#include < stdio.h >
#include < limits.h >

int main(void)
{

short s_money = SHRT_MAX; // Initialize to maximum value . 32767
unsigned short u_money = USHRT_MAX; // Initialize to maximum value . 65535

s_money = s_money + 1;
printf (" s_money = %d" , s_money);

u_money = u_money + 1;
printf (" u_money = %d" , u_money);
return 0;

}

Overflow occurred !!

S_money = -32768
U_money = 0

1111 1111 1111 1111 (65535)

+ 1

1 0000 0000 0000 0000 (carry generation)

↓

0000 0000 0000 0000 (result value)

The extra 1 that appears beyond the 8-bit boundary is called a

carry bit : it “carries out” of the most significant bit (MSB).

The result of the addition exceeds the representable range of

that data width.

Overflow

• Overflow : Occurs when you try to store a number that exceeds
the range that a variable can represent

reference

Integer constant

• Basically, when you write a number, It becomes int type.
• sum = 123; // 123 is int type

• The data type of a constant, do the following :
• sum = 123L; // 123 is long type

ExampleData typeSuffix

Integer constant

1. The rule: C infers the type of an integer constant automatically

* So if you don’t use L, the compiler picks the smallest type
that can hold the value.

• unsigned long big = 3000000000UL; // correct

• long long big = 3000000000LL; // always safe (fits easily)

Example Without suffix Compiler assigns type Reason

10 int fits in int range default

1000000000 int fits in 32-bit int default

3000000000 unsigned long (on 32-bit)
exceeds signed int max
(2,147,483,647)

automatic promotion

* Even though you wrote L, the compiler automatically promotes it to unsigned long

because the signed long range was exceeded

Example

/* Integer constant program * /

#include < stdio.h >

int main(void)

{

int x = 10; // 10 is a decimal number, is of type int , and has a value of 10 in decimal .

int y = 010; // 010 is an octal number, of type int , and its value is 8 in decimal .

int z = 0x10; // 010 is a hexadecimal number, int type, and its value is 16 in decimal .

printf ("x = %d" , x);

printf ("y = %d" , y);

printf ("z = %d" , z);

return 0;

}

x = 10

y = 8

z = 16

x = 10
y = 8
z= 16

Symbolic Constant

• constant : A constant expressed using symbols.

• (example)
• won = 1120 * dollar; // (1) Use actual value

• won = EXCHANGE_RATE * dollar; // (2) Use of symbolic constants

• Advantages of symbolic constants
• Readability is improved.

• The values can be easily changed.

Advantages of symbolic constants

You only need to modify the places where symbolic

constants re defined.

How to create symbolic constants #1

Symbolic constant declaration Symbolic constant value

How to create symbolic constants #2

Symbolic constant declaration Symbolic constant value

Example : Symbolic Constants
Practice

Symbol constant

Enter your salary : 100
The annual salary is 1200 .
The tax is 240.000000 .

Integer representation method

• In computers, integers are represented in binary form,
and binary numbers are represented by electronic switches.

short type

Positive integer

bit pattern integer

Integer representation method

• Positive
• You can convert decimal to binary and save it.

• Negative
• Usually the first bit is used as the sign bit.

First way to express negative numbers
(Wrong way)

• The first method is to consider the very first bit as the sign bit.

• When performing addition operations on positive and negative
numbers, the results are inaccurate.

• (Example) +3 + (-3)

Computers can only do addition

• Computers only have addition circuits to reduce the size of the
circuit.

• Subtraction is converted to addition as follows: Handle it.

3-3 = 3+(-3)

Second way to express negative numbers
(Correct way)

• Representing negative numbers with 2's complement.
-> Standard way to represent negative numbers

• 2's complement : How to make (-3)
1. Invert all bits

2. Add 1

Second way to express negative numbers

0000...00000011 (3)

+ 1111...11111101 (-3)

1 0000...00000000

The 33rd bit on the left (carry out of MSB) is 1

But in a fixed 32-bit integer, that carry is discarded (ignored)

The remaining 32 bits are all zero → result = 0

2's complement

2 's complement,
negative numbers
in 2 's
complement, you
can add positive
and negative
numbers by adding
the individual bits.

Example

/* 2 's complement program * /

#include < stdio.h >

int main(void)

{

int x = 3;

int y = -3;

printf ("x = %08X\n" , x); // Print as 8 - digit hexadecimal number .

printf ("y = %08X\n" , y); // Print as 8- digit hexadecimal number .

printf (" x+y = %08X\n" , x+y); // Print as 8 - digit hexadecimal number .

return 0;

}

negative numbers are
represented in 2 's
complement .

x = 00000003

y = FFFFFFFD

x+y = 00000000

How to indicate a real number

• In mathematics, a real number is a number with a decimal point,
such as 3.14. Real numbers are an essential element when writing
applications in science or engineering that deal with very large or
very small numbers.

How to express a real number #1

• Allocate a certain number of bits for the integer part and a c
ertain number of bits for the fractional part.

• the total is 32 bits, 16 bits are allocated for the integer part a
nd 16 bits for the fractional part.

• It cannot express the very large numbers required in science
and engineering.

Integer part Fractional part

How to express a real number #2

• Floating point method

• The range of expressions available is greatly expanded .

10 -38 ~ 10 +38

0 me

부호비트(1비트)

가수부분(23비트)지수부분(8비트)

149598000 = 1.49598×108

실수값 = (-1)s * (1.m) * 2 e-127

There have been a number of
different floating point methods
in use for some time, but they
have been standardized since
1985 as IEEE 754 .

exponential part (8bit) significand part (23bit)

Sign bit (1bit)

Value of real number

Floating point type

Format specifier for printing real numbers

• %f
• printf (“%f”, 0.123456789); // Prints 0.123457

• %e
• printf (“%e”, 0.123456789); // Prints 1.234568e-001

Example

/* Calculating the size of floating point data types * /

#include < stdio.h >

int main(void)

{

float x = 1.234567890123456789;

double y = 1.234567890123456789;

printf (" Size of float =%d\n" , sizeof (float));

printf (" Size of double =%d\n" , sizeof (double));

printf ("x = %30.25f\ n" ,x);

printf ("y = %30.25f\ n" ,y);

return 0;

}
size of float = 4
size of double =8
x = 1.2345678806304932000000000
y = 1.2345678901234567000000000

Floating point constant

Real number Exponential notation Meaning

Floating point overflow

#include < stdio.h >

int main(void)

{

float x = 1e39;

printf ("x = %e\ n" ,x);

}

Overflow occurs due to large number

x = inf

Press any key to continue . . .

Floating point underflow

#include <stdio.h>

int main(void)

{

float x = 1.23456e-38;

float y = 1.23456e-40;

float z = 1.23456e-46;

printf("x = %e\n" ,x);

printf("y = %e\n" ,y);

printf("z = %e\n" ,z);

}

Underflow occurs

x = 1.234560e-038
y = 1.234558e-040
z = 0.000000e+000

Text type

• Text is more important to humans than to computers

• Letters are also expressed using numbers

• A common standard is needed.

• ASCII code (ASCII: American Standard Code for Information
Interchange)

ASCII Code Table

ASCII Code Table

Character variable

• char type Use to store text .

char code;

code = 'A' ;

Example

/* Character variables and character constants * /

#include < stdio.h >

int main(void)

{

char code1 = 'A' ; // Initialize to a character constant

char code2 = 65; // Initialize to ASCII code

printf (“code1 = %c\n" , code1);

printf (“code2 = %c\n" , code2);

}

code1 = A
code2 = A

Control characters

• Characters used for control purposes rather than printing pur
poses.

• (Example) Line break character , tab character , ringtone character ,
backspace character

How to represent control characters

• Use ASCII code directly

• Using escape sequences

char beep = 7;

printf ("%c", beep);

char beep = '\a';

printf ("%c ", beep);

Escape Sequence

How to make a program beep ?

Backslash \

• Backslash before characters with special functions if you place \,
the special meaning of the character is lost .

printf (" \" My own Hollywood \" UCC craze ");

“My Own Hollywood” UCC Craze

printf (" \\ is used to display control characters . ");

\ is used to indicate control characters .

Example
#include < stdio.h >

int main(void)

{

int id, pass;

printf (" Please enter your ID and password as 4 digits :\n");

printf ("id: ____\b\b\b\b");

scanf ("%d" , &id);

printf ("pass: ____\b\b\b\b");

scanf ("%d" , &pass);

printf ("\aThe entered ID is \"%d\" and the password is \"%d\"." , id, pass);

return 0;

}

your ID and password using 4 digits :

id: 1234

pass: 5678

The entered ID is "1234" and the password is "5678" .

char type as integer

• The char type can be used to store 8- bit integers .

65 66 67
ABC

Practice

Lab: Variables Initial value

#include < stdio.h >

int main(void)

{

int x, y, z, sum;

printf (" Enter three integers (x, y, z): ");

scanf ("%d %d %d", &x, &y, &z);

sum += x;

sum += y;

sum += z;

printf (" The sum of three integers is %d\n", sum);

return 0;

}

#include < stdio.h >

int main(void)

{

int x, y, z, sum;

sum = 0;

printf (" Enter three integers (x, y, z): ");

scanf ("%d %d %d", &x, &y, &z);

sum += x;

sum += y;

sum += z;

printf (" The sum of three integers is %d\n", sum);

return 0;

}

What could be the problem ?

Variables must be
initialized before use !

Enter 3 integers (x, y, z): 10 20 30

three integers is 60

Q & A

