
Ch.5 Expression and
operation

What you will learn in this chapter

* What are expression and operation?

* Assignment operation

* Arithmetic operations

* Logical operations

* Relational operations

* Priority and associativity rules

Operators in the C language

• The de facto industry standard

• Modern languages such as Java , C++, Python , and
JavaScript use C language operators almost as they are.

Example of expression

Expression

∙ expression
∙ constants , variables , and operators
∙ It is divided into operators and operands .

expression

Value of expression

Classification of operators by function

Arithmetic Operators

• Arithmetic Operations : The most basic operations on a computer

• Operators that perform basic arithmetic operations such as addition,
subtraction, multiplication, and division.

addition

subtraction

multiplication

division

remain

Examples of arithmetic operators

(Note) What is the exponentiation operator ?

C does not have an operator for exponentiation .

Simply multiply the variable twice, like x * x .

Integer arithmetic operations

7
x

4
y

Enter two integers : 7 4

7 + 4 = 11

7 - 4 = 3

7 + 4 = 28

7 / 4 = 1

7 % 4 = 3

Practice

Division operator

• Division between integers produces an integer result, and division
between floating-point numbers produces a floating-point value.

• In division between integers, the fractional parts are discarded.

Division of real numbersDivision of real integer

#include < stdio.h >

int main()

{

double x, y, result;

printf (" Enter two real numbers : ");

scanf("%lf %lf" , &x, &y);

result = x + y; // Perform addition operation and assign the result to result

printf("%f / %f = %f" , x, y, result);

...

result = x / y;

printf("%f / %f = %f" , x, y, result);

return 0;

}

Real number Arithmetic operations

Enter two real numbers : 7 4

7.000000 + 4.000000 = 11.000000

7.000000 - 4.000000 = 3.000000

7.000000 + 4.000000 = 28.000000

7.000000 / 4.000000 = 1.750000

Remainder operator

• The modulus operator calculates the remainder when the first
operand is divided by the second operand.
• 10 % 2 is 0

• 5 % 7 is 5

• 30 % 9 is 3

• (Example) Distinguishing between even and odd numbers using
the remainder operator
• Even if x % 2 is 0

• (Example) Determining “multiples of 3” using the remainder
operator
• x % 3 is 0, then it is a multiple of 3

Remainder operator
Practice

70

input

1
minute

10

second

Enter seconds : 1000

1000 seconds is 16 minutes

and 40 seconds .

Sign operator

• Change the sign of a variable or constant

x = -10;

y = -x; // The value of variable y becomes 10 .

- is both a

binary

operator and

a unary

operator.

10 -

Binary
operator

20 -

Unary
operator

10

Increment/decrement operator

• Increment/decrement operators : ++, --

• Operator that increases or decreases the value of a variable by one.

• (Example) ++x, --x;

Difference between ++x and x++

Increment/decrement operator summary

Example : Increment/decrement operator

x=10

++x value = 11

x=11

y=10

The value of y++ = 10

y=11

First, the value is increased
and the increased value is
used in the expression .

Use the current value in the
expression first

and increases later .

Practice

Assignment operator

Caution: assignment operators

• 100 = x + y; // Compile error !

Caution: assignment operators

x = x + 1;

It is a correct statement in C , but
mathematically incorrect.

The result of the assignment operation

Every operation has a result,
and assignment operations

also have a result.

Next sentence is also possible .

y = x = 3;

A statement that assigns the same value to multiple variables

can be written as follows. Here x = 3 is first performed, and

then the resulting value 3 is assigned to y

Example
/* Assignment operator program * /

#include < stdio.h >

int main(void)

{

int x, y;

x = 1;

printf (" The value of expression x+1 is %d\n" , x+1);

printf (" The value of the expression y=x+1 is %d\n" , y=x+1);

printf (" The value of the expression y=10+(x=2+7) is %d\n" , y=10+(x=2+7));

printf (" The value of the expression y=x=3 is %d\n" , y=x=3);

return 0;

}

y
1

x

The value of the expression x+1 is 2

The value of the expression y=x+1 is 2

The value of the expression y=10+(x=2+7) is 19

The value of the expression y=x=3 is 3

Compound assignment operator

• A compound assignment operator is an operator that combines
an assignment operator = and an arithmetic operator, such as +=.

• You can make the source simpler

x += y;

It has the same meaning as x = x + y !

Compound assignment operator

Quiz

• If we solve the following equation and rewrite it, what would
it be?

x *= y + 1

x %= x + y

x = x * (y + 1)

x = x % (x + y)

Compound assignment operator
// Compound assignment operator program

#include < stdio.h >

int main(void)

{

int x = 10, y = 10, z = 33;

x += 1;

y *= 2;

z %= 10 + 20;

printf ("x = %d y = %d z = %d \n" , x, y, z);

return 0;

}

10

x

10

y

33

z

x = 11 y = 20 z = 3

Error

The left side of the equal sign must always be a variable

The left side of the equal sign must always be a variable

x *= y, NOT =*

Relational Operators

• Operator that compares two operands

• The result is true (1) or false (0).

Compares whether the values

of x and y are equal .

x == y
x y

Relational Operators

Examples of relational operators

1 == 1 // true (1)

1 != 2 // true (1)

2 > 1 // true (1)

x >= y // true if x is greater than or equal to y (1) , otherwise false (0)

Example

Enter two integers : 3 4

The result of x == y is 0

The result of x != y is 1

The result of x > y is : 0

Result of x < y : 1

The result of x >= y is 0

The result of x <= y is 1

Practice

Caution!

• (x = y)
• Substitute the value of y into x. The value of this expression is the value of

x.

• (x == y)
• x and y are equal, the value of the expression is 1, otherwise it is 0.

• Be careful not to use (x == y) and (x = y) incorrectly !

Caution: when using relational operators

• As in mathematics, 2 < x < 5 and If you write them together,
you will get wrong results .

• The right way : (2 < x) && (x < 5)

Logical Operators

• An operator that combines multiple conditions to determine
true or false.

• The result is true (1) or false (0).

x && y

Only when both x and y are true,

It is true.

Logical Operators

AND operator

• A company is hiring new employees and they set a requirement
that the applicants be under 30 years old and have a TOEIC score
of 700 or higher .

OR operator

• The conditions for hiring new employees have changed so that
they may be under 30 years old or have a TOEIC score of 700
or higher .

Examples of logical operators

• “ Is x one of 1, 2, or 3 ?”
• (x == 1) || (x == 2) || (x == 3)

• “ x is greater than or equal to 60 and less than 100 .”
• (x >= 60) && (x < 100)

• “ x is neither 0 nor 1 .”
• (x != 0) && (x != 1) // x≠0 and x≠1

NOT operator

• If the value of the operand is true, the result of the operation
is made false, and if the value of the operand is false,
the result of the operation is made true.

result = !1; // 0 is assigned to result .

result = !(2==3); // 1 is assigned to result .

How to express truth and false

• If a relational expression or logical expression is true, 1 is
generated, and if it is false, 0 is generated.

• It is considered true if it is not 0, and false if it is 0.

• Negative numbers are considered false. (X)

(Example) When applying the NOT operator (True -> False)

!0 // The value of the expression is 1

!3 // The value of the expression is 0

!-3 // The value of the expression is 0

Example

#include < stdio.h >

int main(void)

{

int x, y;

printf (" Enter two integers : ");

scanf ("%d %d" , &x, &y) ;

printf ("%d && %d result : %d", x, y, x && y) ;

printf ("%d || %d result : %d", x, y, x || y) ;

printf ("!%d result : %d", x, !x);

return 0;

}

Enter two integers : 1 0

The result of 1 && 0 is: 0

Result of 1 || 0 : 1

!1 result : 0

Shortcut calculation

• For the && operator, if the first operand is false,
the other operands are not evaluated.

(2 > 3) && (++x < 5)

∙ For the || operator, if the first operand is true,
the other operands are not evaluated.

(3 > 2) || (--x < 5)
Please be

careful that
++ and –-

may not run.
The first operator is

If it's false, then
don’t need

to check the rest

Lab: Leap year

• Conditions for a leap year
• The year is divisible by 4.

• Years divisible by 100 are excluded.

• A year that is divisible by 400 is a leap year.

Enter the year : 2012

result=1

Lab: Leap year (2000, 2004, 2008, 2012, 2016, 2020, 2024)

• Expressing the conditions for a leap year in a expression

• ((year % 4 == 0) && (year % 100 != 0)) || (year % 400 == 0)

Are parentheses

really necessary ?

Parentheses are
optional, but they

make reading easier .

Practice

Lab: Leap year

Enter the year : 2012

result=1

Conditional Operator

absolute_value = (x > 0) ? x : -x; // Calculate absolute value

max_value = (x > y) ? x : y; // Calculate maximum value

min_value = (x < y) ? x : y; // Calculate minimum value

(age > 20) ? printf (" Adult \n"): printf (" Teenager \n");

True

False

Example

// Conditional operator program

#include < stdio.h >

int main(void)

{

int x,y ;

printf("Two integers : ");

scanf("%d %d" , &x, &y);

printf("large number = %d\n" , (x > y) ? x : y);

printf("small number = %d\n" , (x < y) ? x : y);

return 0;

}

2 integers : 2 3

Big number =3

small number = 2

comma operator

• expressions connected by commas are calculated sequentially
.

Any
sentences are

executed
sequentially .

Examples of comma operators

x = 2+3, 5-3; // x=2+3 is executed first.

printf (“Thank”), printf (“you!\n”);

x = 2, y = 3, z = 4;

All data is made up of bits .

Bitwise Operator

Bitwise AND operator

0 AND 0 = 0

1 AND 0 = 0

0 AND 1 = 0

1 AND 1 = 1

Bit OR operator

0 OR 0 = 0

1 OR 0 = 1

0 OR 1 = 1

1 OR 1 = 1

Bitwise XOR operator

0 XOR 0 = 0

1 XOR 0 = 1

0 XOR 1 = 1

1 XOR 1 = 0

Bitwise NOT operator

NOT 0 = 1

NOT 1 = 0

Bit shift operator

<< operator

• bit left

• The value is doubled

>> operator

• move

• The value is multiplied by 1/2

If it is
positive, 0
comes in
from the

left .

#include < stdio.h >

int main(void)

{

printf ("AND : %08X\n" , 0x9 & 0xA);

printf("OR : %08X\n" , 0x9 | 0xA);

printf("XOR : %08X\n" , 0x9 ^ 0xA);

printf ("NOT : %08X\n" , ~0x9);

printf("<< : %08X\n" , 0x4 << 1);

printf(">> : %08X\n" , 0x4 >> 1);

return 0;

}

Example : Bitwise Operators

AND : 00000008

OR : 0000000B

XOR : 00000003

NOT : FFFFFFF6

<< : 00000008

>> : 00000002

Lab: Outputting decimal to binary

• use bitwise operators to display decimal numbers less than
128 in binary format on the screen.

Decimal : 32

Binary :

#include <stdio.h>

int main(void)

{

unsigned int num;

printf (" Decimal : ");

scanf ("%u" , &num);

unsigned int mask = 1 << 7; // mask = 10000000

printf (" Binary : ");

((num & mask) == 0) ? printf("0") : printf("1");

mask = mask >> 1; // Shift 1 bit to the right .

((num & mask) == 0) ? printf("0") : printf("1");

mask = mask >> 1; // Shift 1 bit to the right .

((num & mask) == 0) ? printf("0") : printf("1");

Lab: Outputting decimal to binary

mask = mask >> 1; // Shift 1 bit to the right .

((num & mask) == 0) ? printf("0") : printf("1");

mask = mask >> 1;

((num & mask) == 0) ? printf("0") : printf("1");

mask = mask >> 1;

((num & mask) == 0) ? printf("0") : printf("1");

mask = mask >> 1;

((num & mask) == 0) ? printf("0") : printf("1");

mask = mask >> 1;

((num & mask) == 0) ? printf("0") : printf("1");

printf ("\n");

return 0;

}

Lab: Outputting decimal to binary

Type conversion

• Type conversion is changing the type of data during execution.

Be careful
because if you do

the conversion
incorrectly, some

of the data may be
lost.

Type conversion

• The type of data is converted during operation.

Type conversion

Type conversion during assignment operation

Type conversion during integer operation

Type conversion during formula operation

The type of the
variable does

not change, but
the type of data

stored in the
variable

changes .

Automatic type conversion during
assignment operations

• Upward conversion

double f;

f = 10 ; // 10.0 is stored in f .

Automatic type conversion during
assignment operations

• Downward conversion

int i;

i = 3.141592; // 3 is stored in i .

Integer type conversion

char x;

x = 10; // OK

x = 10000; // upper bytes are gone.

10000 = 0010 0111 0001 0000

Low 8 bits = 0001 0000 = 16

#include <stdio.h>

int main(void)

{

char c;

int i;

float f;

c = 10000; // Round down

i = 1.23456 + 10; // Round down

f = 10 + 20; // round up

printf("c = %d, i = %d, f = %f \n" , c, i, f);
r eturn 0;

}

Up and down conversions

c=16, i=11, f=30.000000

c:\...\convert1.c(10) : warning C4305: '=' : truncation from 'int' to 'char'

c: \...\convert1.c(11) : warning C4244: '=' : possible loss of data while

converting from ' double '

Automatic type conversion
when performing integer operations

• When performing integer operations, if the type is char or short,
it is automatically converted to int type and then calculated .

Automatic type conversion in
expressions

• When different data types are used together, they are unified
into a larger data type .

Explicit type conversion

Example
#include < stdio.h >

int main(void)

{

int i ;

double f;

f = 5 / 4;

printf ("%f\n" , f);

f = (double)5 / 4;

printf ("%f\n" , f);

f = 5.0 / 4;

printf ("%f\n" , f);

5 becomes 5.0, so the

overall result is 1.25

5/4 becomes 1,

which becomes 1.0

Example

f = (double)5 / (double)4;

printf ("%f\n" , f);

i = 1.3 + 1.8;

printf ("%d\n" , i);

i = (int)1.3 + (int)1.8;

printf ("%d\n" , i);

return 0;

} 1.000000

1.250000

1.250000

1.250000

3

2

1.3 becomes 1 and

1.8 also becomes 1 ,

so the final result is 2

Priority

• Rules for which operator to evaluate first

Priority
Rank Operator(s) Description Associativity

1 () [] -> . Function call, array subscript, structure/union member access Left to right

2 ++ -- Postfix increment and decrement Left to right

3 + - ! ~ ++ -- (type) * & sizeof
Unary operators (sign, logical NOT, bitwise NOT, cast,

dereference, address-of, size)
Right to left

4 * / % Multiplication, division, remainder Left to right

5 + - Addition, subtraction Left to right

6 << >> Bitwise shift left, shift right Left to right

7 < <= > >= Relational (less/greater than) Left to right

8 == != Equality and inequality Left to right

9 & Bitwise AND Left to right

10 ^ Bitwise XOR Left to right

11 | Bitwise OR

12 && Logical AND Left to right

13 || Logical OR

14 ?: Conditional (ternary) operator Right to left

15 = += -= *= /= %= &= ^= ` = <<= >>=` Assignment operators

16 , Comma operator (sequential evaluation) Left to right

General guidelines for priorities

• Comma < Assignment < Logic < Relation < Arithmetic < Unary

• Parentheses operators have the highest precedence.

• All unary operators have higher precedence than binary operators .

• Assignment operators have the lowest precedence,
except for the comma operator .

• If you can't remember the precedence of operators, use parentheses.

• (x <= 10) && (y >= 20)

• Relational and logical operators have lower precedence than arithmetic
operators .

• x + 2 == y + 3

• Relational operators have higher precedence than logical operators.
Therefore, you can use sentences like the following with confidence.

• x > y && z > y // Same as (x > y) && (z > y)

General guidelines for priorities

• among logical operators, the && operator has higher precedence than the ||
operator .
• x < 5 || x > 10 && x > 0 // x < 5 || (x > 10 && x > 0)

• Sometimes the order of evaluation of operators can be quite confusing.
In x * y + w * y It is unclear which of x * y and w * y will be computed first.

Combination Rules

• If there are multiple operators with the same priority, the rule
for which one should be performed first

(Operation) (Assignment)

Example of a combination rule

Example of a combination rule

#include < stdio.h >

int main(void)

{

int x=0, y=0;

int result;

result = 2 > 3 || 6 > 7 ;

printf ("%d" , result);

result = 2 || 3 && 3 > 2 ;

printf ("%d" , result);

result = x = y = 1;

printf ("%d" , result);

result = - ++x + y--;

printf ("%d" , result);

return 0;

}

Example

0

1

1

-1

Q & A

