Ch.5 Expression and
operation

What you will learn in this chapter

* What are expression and operation?
* Assignment operation

* Arithmetic operations

* Logical operations

* Relational operations

* Priority and associativity rules

Operators in the C language

« The de facto industry standard

« Modern languages such as Java , C++, Python , and
JavaScript use C language operators almost as they are.

— >

I= .
! C operators sizeof

/ 4

Example of expression

Calculate the value

of the formula x? - 5x + 6

int x, y;

X =35
y = X*¥X - 5%X + 0;
printf("%d\n", y);

Expression

expression
constants , variables , and operators
It is divided into operators and operands .

f operand operator operand ~’
| | expression
| 5 . 8 e
| |
= _
‘ ; =

40 Value of expression

Classification of operators by function

Unary — T, Unary Operator
Operator
r— v, - *, /, % Arithmetic Operator
<, <=, > >= == Iz Relational Operator
Binary < &&, |, ! Logical Operator
Operator
&, I, S, PP, . 7N Bitwise Operator
& -y Ty == *=, /=, %=| Assignment Operator
T
2. ernary or

Ternary —»
Operator

.

Conditional Operator

J

Arithmetic Operators

« Arithmetic Operations : The most basic operations on a computer

 Operators that perform basic arithmetic operations such as addition,
subtraction, multiplication, and division.

operator sign Example of use result
addition + 7+ 4
subtraction - /-4 3
multiplication * 7*4 28
division / 7/4

remain % 7% 4 3

Examples of arithmetic operators

y=mx+b - Yy = m*X + b;
y=ax’+br+c -> y = a*xX*X + b*X + ¢
m:% > m = (x+y+2)/3;

(Note) What is the exponentiation operator ?

g

C does not have an operator for exponentiation .
Simply multiply the variable twice, like x * x .

Integer arithmetic operations

#include <stdio.h>

int main(void)

{
int x, y, result;
printf("Enter two integers : “);
scanf("%d %d" , &x, &y);

result = X + v;
printf("%d + %d = %d" , x, y, result);

result = X - y; // subtraction

printf("%d - %d = %d" , X, y, result);
result = x * y; // multiplication
printf("%d + %d = %d" , X, y, result);
result = x / y; // division

printf("%d / %d = %d" , x, y, result);
result = x % y; // remainder

printf("%d %% %d = %d" , X, y, result);
return 0;

i

Enter two integers : 7 4
7+4=11
7-4=3
7+4=28

7/4=1
7%4=3

Division operator

* Division between integers produces an integer result, and division
between floating-point numbers produces a floating-point value.

* In division between integers, the fractional parts are discarded.

7 \ 4 7.0 \ 4.0
l l
1 1.75

Division of real integer Division of real numbers

Real number Arithmetic operations

#include < stdio.h >

int main()

{

double x, vy, result;

printf (" Enter two real numbers : “);
scanf("%lf %lf" , &x, &y);

result = x +y; // Perform addition operation and assign the result to result
printf("%f / %f = %f" , x, y, result);

result =x /vy;
printf("%f / %f = %f" , X, y, result);

Enter two real numbers : 7 4
7.000000 + 4.000000 = 11.000000
7.000000 - 4.000000 = 3.000000
7.000000 + 4.000000 = 28.000000

return 0;

7.000000 / 4.000000 = 1.750000

Remainder operator

» The modulus operator calculates the remainder when the first
operand is divided by the second operand.
*10% 21is0
«5%71is5
*«30%9is 3

 (Example) Distinguishing between even and odd numbers using
the remainder operator
« Evenif x% 21is 0

* (Example) Determining “multiples of 3” using the remainder

operator
* X % 31is 0, then it is a multiple of 3

Remainder operator

// Remainder operator program

#include <stdio.h> 70 1 (IO)
#define SEC_PER_MINUTE 60 // 1 minute is 60 seconds
iput it d

int main(void) 4 e oon
{

int input, minute, second;

printf (“Please enter seconds : ");

scanf ("%d" , &input); // Read the time in seconds .

minute = input / SEC_PER_MINUTE; // how many minutes

second = input % SEC_PER_MINUTE; // how many seconds

printf ("%d seconds are %d minutes %d seconds. \n" , input, minute, second);

return O;
1 Enter seconds : 1000

1000 seconds 1s 16 minutes

and 40 seconds .

Sign operator

« Change the sign of a variable or constant

x =-10;
y = -x; // The value of variable y becomes 10 .

- 1s both a
binary
operator and
a unary
operator.

10 = 20 _ 10

Binary Unary
operator operator

Increment/decrement operator

* Increment/decrement operators : ++, --
 Operator that increases or decreases the value of a variable by one.
* (Example) ++x, --x;

—IUN —L

initial state After the operation is executed

Difference between ++x and x++

¢ll

@ \®

g
y=++X; 10"
The increased value of x is assigned toy.
§ 11 «
® @
/'/‘__,a- |
y=X++;

\10 -
Eng

Substitute first, then increase later.

Increment/decrement operator summary

increment operator difference
++x The value of the formula is the incremented value.
X++ The value of the formula is the original x value that has not been increased.
-=X The value of the formulais the reduced value.

) The value of the formula is the original, undecreased x-value.

Example : Increment/decrement operator

#include <stdio.h>
int main(void)
{

int x=10, y=10;

printf("x=%d\n" , x);
printf("++x value =%d\n", ++x);
printf("x=%d\n\n" , x);

printf("y=%d\n", y);
printf(“value of y++ =%d\n", y++);
printf("y=%d\n", y);

return O;

First, the value is increased
and the increased value is
used in the expression .

Use the current value in the
expression first
and increases later .

x=10
++x value = 11
x=11

y=10
The value of y++ = 10
y=11

Assignment operator

Caution: assignment operators

« 100 = x +y; // Compile error !

100

Sa

30

N

Eng

ving is not possible because there is no var

+

iable,

Ea

Caution: assignment operators

It is a correct statement in C , but
mathematically incorrect.

XxX=x+1;

The result of the assignment operation

Every operation has a result,
and assignment operations
also have a result.

The result of the addition operation is 9

r

1@+(x=’2+7‘);

» <<
Il

The result of the assignment operation is 9

The result of the addition operation is 19

W

The result of the assignment operation is 19 (currently unused)

Next sentence Is also possible .

A A
y=x=3;

A statement that assigns the same value to multiple variables

can be written as follows. Here x = 3 is first performed, and
then the resulting value 3 is assigned to y

Example

/* Assighment operator program * /
#include < stdio.h >

int main(void)

| Bl
int x, y;

X=1;

printf (" The value of expression x+1 is %d\n" , x+1);

printf (" The value of the expression y=x+1 is %d\n" , y=x+1);

printf (" The value of the expression y=10+(x=2+7) is %d\n" , y=10+(x=2+7));
printf (" The value of the expression y=x=3 is %d\n" , y=x=3);

return O;

The value of the expression x+1 is 2

The value of the expression y=x+1 is 2

The value of the expression y=10+(x=2+7) is 19

The value of the expression y=x=3 is 3

Compound assignment operator

« A compound assignment operator is an operator that combines
an assignment operator = and an arithmetic operator, such as +=.

* You can make the source simpler
It has the same meaning as x = x + y !

S

X += Y; /

Compound assignment operator

X += Yy X=X+Y X &=y X =X&Yy
X -=y X=X-Y X =y X=Xy
X *¥=y X =x*y x" =y x=x"y
X /=y X=Xx/Yy X M=y X=X >y

Quiz

- If we solve the following equation and rewrite it, what would
it be?

X*=y + 1 ,?

X %=X +Yy e |

Xx=x*(y+1)
X=X%(X+Y)

Compound assignment operator

{

// Compound assighment operator program
#include < stdio.h >

int main(void)

intx=10,y =10, z = 33;

X +=1;
y =2
z %= 10 + 20;

printf ("x=%dy=%dz="%d\n", X,y, z);
return O;

10

@

Xx=11y=20z=3

Error

beware of errors

The following formula is incorrect. Why is that?

+x = 1 O, The left side of the equal sign must always be a variable

x+1=20; The left side of the equal sign must always be a variable

X =*y; x *= y, NOT =*

Relational Operators

» Operator that compares two operands

* The result is true (1) or false (0).
Compares whether the values
) of x and y are equal .

—— ~3.
X %@ é

Relational Operators

calculation meaning calculation meaning

X ==Y Are x and y equal? X<y Is x less than y?

X I= y Are x and y different? X >=Yy Is x greater than or equal to y?
X>y Is x greater than y? X <= Y Is x less than or equal to y?

Examples of relational operators

1==1
11=2
2>1
X>=y

Example

#include <stdio.h>
int main(void)

{

int x, vy;

printf ("

Enter two integers : “);

scanf ("%d%d ", &x, &y);

printf ("
printf ("
printf ("
printf ("
printf ("
printf ("

return 0;

The result of x ==y : %d\n", X ==y);
The result of x I=y : %d\n", x I=y);
Result of x >y : %d\n", x > y);

The result of x <y : %d\n ", x < y);
The result of x >=y : %d\n ", x >=y);
The result of x <=y : %d\n ", X <=y);

Enter two integers : 3 4
The result of x ==y is 0
The result of x I=y is 1

The result of x >y is: 0
Result of x <y : 1

The result of x >=y is 0
The result of x <=y is 1

Caution!

*(x=y)
* Substitute the value of y into x. The value of this expression is the value of
X.

° (X == y)
« x and y are equal, the value of the expression is 1, otherwise it is O.
 Be careful not to use (x ==y) and (x = y) incorrectly !

Caution: when using relational operators

* As in mathematics, 2 < x < 5 and If you write them together,
you will get wrong results .

* The right way : (2 < x) && (x < 5)

Logical Operators

« An operator that combines multiple conditions to determine
true or false.

* The result is true (1) or false (0).

(=Y
ﬁﬁky" W

X &'y

e

Logical Operators

calculation meam’ng
X && vy AND operation, true if both x and y are true, otherwise false
X i y OR operation, true if only one of x or y is true, false if both are false
Ix NOT operation, false if x is true, true if x is false

OtRF)=1 8& AIB)=4 ...

AND operator

« A company is hiring new employees and they set a requirement
that the applicants be under 30 years old and have a TOEIC score
of 700 or higher .

27 800
(age) <= 30) && (toeio >= 700)

True(1) True(1)

True(1)

OR operator

« The conditions for hiring new employees have changed so that
they may be under 30 years old or have a TOEIC score of 700
or higher .

27 699
(age) <= 30) || (toeio >= 700)

True(1) false(0)

True(1)

Examples of logical operators

e"|sxoneofl 2 or37?
0()(::)”(X::)”(X::3)

" x Is greater than or equal to 60 and less than 100 ."
* (x >= 60) && (x < 100)

e“xis neitherOnor1."
e (x!=0) && (x!'=1) // x#0 and x#1

NOT operator

* If the value of the operand is true, the result of the operation
is made false, and if the value of the operand is false,
the result of the operation is made true.

initial state After the operation is executed

result = !11; // 0 is assigned to result .
result = 1(2==3); // 1 is assigned to result .

How to express truth and false

« If a relational expression or logical expression is true, 1 is
generated, and if it is false, O is generated.

* |t is considered true if it is not O, and false if it is O.
« Negative numbers are considered false. (X)
(Example) When applying the NOT operator (True -> False)

0 // The value of the expression is 1
'3 // The value of the expression is 0

-3 // The value of the expression 1s 0

Example

#include < stdio.h >

int main(void)

{

int x, y;

printf (" Enter two integers : ");
scanf ("%d %d" , &x, &y) ;

printf ("%d && %d result : %d", x, y, x && vy) ;
printf ("%d || %d result : %d", X, y, X || V) ;
printf ("!%d result : %d", x, Ix);

return O;

Enter two integers : 10
The result of 1 && 0 is: O
Resultof 1 || 0: 1

"1result: 0

Shortcut calculation

 For the && operator, if the first operand is false,
the other operands are not evaluated.

(2>3)&& (++x<5) A
\

\

For the || operator, it the first operand is true,
the other operands dre not evaluated.

(3>2) 11 (-x<5) |

Please be
\ careful that

++ and —
may not run.

The first operator is
If it's false, then
don't need
to check the rest

Lab: Leap year

" February 29
« Conditions for a leap year p

« The year is divisible by 4. + 1
Day

* Years divisible by 100 are excluded.
A year that is divisible by 400 is a leap year.

Enter the year : 2012
result=1

Lab: Leap year (000, 2004, 2008, 2012, 2016, 2020, 2024)

* Expressing the conditions for a leap year in a expression

* ((year % 4 == 0) && (year % 100 != 0)) || (year % 400 == 0)

Are parentheses Parentheses are

really necessary ? optional, but they
make reading easier .

Lab: Leap year

// A leap year is a year in which an extra 29 days are added to February every
four years, making it a year of 366 days.
#include <stdio.h>
int main(void)
{
int year, result;
printf (* Enter the year : ");
scanf ("%d" , &year);
result = ((year % 4 == 0) && (year % 100 !=0)) || (year % 400 == 0);
printf (“result=%d \n" , result);
return O;
} Enter the year : 2012

result=1

Conditional Operator

True N
max_value = (x > y) 2/x : v;

\\7
False

absolute_value = (x > 0) ? x : -x; // Calculate absolute value
max_value = (x >y) ? x : y; // Calculate maximum value
min_value = (x <y) ? x : y; // Calculate minimum value
(age > 20) ? printf (" Adult \n"): printf (* Teenager \n");

Example

2 integers : 2 3
Big number =3

/1 Conditional operator program small number = 2
#include < stdio.h >

int main(void)

{

int x,y ;

printf("Two integers : ");
scanf("%d %d" , &x, &y);

printf(“large number = %d\n", (x>y)?x:y);
printf("small number = %d\n" , (x <y)?2x:V);

return 0;

comma operator

* expressions connected by commas are calculated sequentially

It is calculated first. It is calculated later. Any
sentences are

‘,/} executed

. sequentially .
, Y+,

Examples of comma operators

X =2+3, 5-3; // x=2+3 is executed first.
printf (“Thank”), printf (“you!\n”);

X=2,y=3,z=4;

All data is made up of bits .

int variables are 32 bits.

A

;@aaaam1aauana11anaaﬂn11000@00
|in’t el
=

Bitwise Operator

operator meaning of operator yes
& bitwise AND 1if both corresponding bits of the two operands are 10, otherwise O
} bit OR 1if only one of the corresponding bits of the two operands is 10, otherwise 0
A bitwise If the corresponding bits of the two operands have the same value, 0; otherwise, 1.
<« move left Shifts all bits to the left by a specified number.
» _ move_right Shifts all bits to the right by the specified number.
~ bit NOT 0 becomes 1and 1becomes 0.

Bitwise AND operator

OANDO=0
1TANDO=0
OAND1=0
1TAND 1 =1

vaiable 1 00000000 00000000 00000000 00001001 (9)
variale2 00000000 00000000 00000000 00001010 (10)

(variable 1AND variable2) 00000000 00000000 00000000 00001000 (8)

Bit OR operator

OOR0O=0
10RO =1
OOR1=1
1T0R1=1

variablet 00000000 00000000 00000000 00001001 (9)
variable2 00000000 00000000 00000000 00001010 (10)

(variable1 OR variable2) 00000000 00000000 00000000 00001011 (11)

Bitwise XOR operator

O0XOR0=0
1 XOR 0 =1
OXOR1=1
1XOR1=0

Variable1 00000000 00000000 00000000000001001 (9)
Variable2 00000000 00000000 00000000 00001010 (10)

(variable1 XOR variable2) 00000000 00000000 0000000000000011 (3)

Bitwise NOT operator

NOT 0 = 1
NOT 1=0

It becomes a negative number because

the sign bit is inverted.

L

Variable1 00000000 00000000 00000000 00001001 (9)

(NOT variable) 11111111 11111111 11111111 11110110 (-10)

Bit shift operator

operator sign
shift left bit K« x <<y shift the bits of x y spaces to the left

shift right bit » x)) y Shift the bits of x y places to_the right
o) m
W @ 4] 7
= o = —
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
0jo0jo0(1(0|1]1)1 1100101111

o
o
=
o
=
=
=
o
+
o
-
-
o
o
p
o
p
p

<< Operator

e bit left
* The value is doubled

0000000 00000000 P0000000 00000100 (4)

(4<<1) 00000000 00000000 P0000000 00001000 (8)

>> Qperator

* move
 The value is multiplied by 1/2

/

B %PO@@@@O 00000000 00000000 0@0001%? (4)

X Al
(4>>1) 00000000 00000000 00000000 00000010 (2)

/

sign bit

If it is
positive, 0
comes in
from the

Example : Bitwise Operators

#include < stdio.h >

int main(void)

{

printf ("AND : %08X\n" , 0x9 & OxA);

printf("OR : %08X\n" , 0x9 | OxA);

printf("XOR : %08X\n" , 0x9 " OxA);

printf ("NOT : %08X\n" , ~0x9);

printf("<< : %08X\n" , 0x4 << 1);

printf(">> : %08X\n" , 0x4 >> 1); AND : 00000008

OR : 0000000B

return O; XOR : 00000003

1 NOT : FFFFFFF6

<< : 00000008

>>: 00000002

Lab: Outputting decimal to binary

* use bitwise operators to display decimal numbers less than
128 in binary format on the screen.

Decimal : 32
Binary :

Lab: Outputting decimal to binary

#include <stdio.h>

int main(void)

{
unsigned int num;
printf (“ Decimal : ");
scanf ("%u” , &num);

unsigned int mask = 1 << 7; // mask = 10000000
printf (" Binary : ");

((num & mask) == 0) ? printf("0") : printf("1");
mask = mask >> 1; // Shift 1 bit to the right .
((num & mask) == 0) ? printf("0") : printf("1");
mask = mask >> 1; // Shift 1 bit to the right .
((num & mask) == 0) ? printf("0") : printf("1");

Lab: Outputting decimal to binary

mask = mask >> 1; // Shift 1 bit to the right .
((num & mask) == 0) ? printf("0") : printf("1");
mask = mask >> 1;

((num & mask) == 0) ? printf("0") : printf("1");
mask = mask >> 1;

((num & mask) == 0) ? printf("0") : printf("1");
mask = mask >> 1;

((num & mask) == 0) ? printf("0") : printf("1");
mask = mask >> 1;

((num & mask) == 0) ? printf("0") : printf("1");
printf ("\n");

return 0;

Type conversion

 Type conversion is changing the type of data during execution.

Be careful
because if you do
the conversion
incorrectly, some
of the data may be
lost.

®°
v

Type conversion

 The type of data is converted during operation.

- B

Type conversion during assignment operation

r—{ automatic type conversion I < Type conversion during integer operation

Type conversion during formula operation

Type conversion << —

\-—‘ explicit type conversion l

The type of the
variable does
not change, but
the type of data
stored in the
variable
changes .

Automatic type conversion during
assignment operations

« Upward conversion

double f;
f=10; // 10.0is stored in f .

10

double £-10 double = 10.0
f >| f

initial state After the operation is executed

Automatic type conversion during
assignment operations

« Downward conversion

int 1;
i=3.141592; // 3 is storedini .

3.14

int x=3.14 [int= 3

initial state After the operation is executed

Integer type conversion

char x;
x = 10; // OK
x = 10000; // upper bytes are gone.

10

2099

10000 = 0010 0111 0001 0000
Low 8 bits = 0001 0000 = 16

Up and down conversions

#include <stdio.h>
int main(void)

{
char c;
int i;
float f;
¢ = 10000; // Round down
i=1.23456 + 10; // Round down
f=10 + 20; // round up
printf("c = %d, i = %d, f = %f\n", ¢, i, f);
r eturn 0;

c:\...\convertl.c(10) : warning C4305: '=": truncation from 'int' to 'char’

c: \...\convertl.c(11) : warning C4244: '=': possible loss of data while

converting from ' double '

c=16, i=11, f=30.000000

Automatic type conversion
when performing integer operations

« When performing integer operations, if the type is char or short,
It is automatically converted to int type and then calculated .

10 20 Char and short types are
5 processed as int types.
| x [m @y [|
Jd b

Automatic type conversion In
expressions

« When different data types are used together, they are unified
Into a larger data type .

int double
10 . 1.2345

int type is promoted to 4'
double double

10.0 3 1.2345
The result value of the entire formula

dO Ub]-e also becomes double type.

11.2345

double type.

Explicit type conversion

)

formula

« (int) ‘ /I Convert to int type

(double) x /1 Convert to double type
(long) (x+y) /I Convert to long type

. 2345¢

[y

(int)

-

initial state

X

After the operation is executed

Example

#include < stdio.h >

int main(void)

{

5/4 becomes 1,
which becomes 1.0
inti;
double f;

f=5/4;
printf ("%f\n" , f); 5 becomes 5.0, so the

overall result is 1.25
f = (double)5 / 4;
printf ("%f\n" , f);

f=5.0/4;
printf ("%f\n" , f);

Example

f = (double)5 / (double)4;
printf ("%f\n" , f);

i=1.3+1.8; 1.3 becomes 1 and
printf ("%d\n" , i); 1.8 also becomes 1,
so the final result is 2

i=(int)1.3 + (int)1.8;

printf ("%d\n" , i);
return O;

1 1.000000
1.250000
1.250000

¥ 1.250000

3
2

Priority

* Rules for which operator to evaluate first

h& J

2) ?é:

x+y*z (x+y) ¥z
N . O ?f

++||--

o

rlority

Rank Operator(s) Description Associativity

1 on->. Function call, array subscript, structure/union member access Left to right

2 ++ - Postfix increment and decrement Left to right

3 +-1~++-- (type) * & sizeof ;Jgg;)é;%irstc;rds d(rseigg_,olfc’)giiic;zzl)NOT, bitwise NOT, cast, Right to left

4 *| % Multiplication, division, remainder Left to right

5 + - Addition, subtraction Left to right

6 << >> Bitwise shift left, shift right Left to right

7 <<=>>= Relational (less/greater than) Left to right

8 === Equality and inequality Left to right

9 & Bitwise AND Left to right

10 A Bitwise XOR Left to right

11 | Bitwise OR

12 && Logical AND Left to right

13 Il Logical OR

14 ? Conditional (ternary) operator Right to left

15 =4z == = Y= &="= =<<=>>=" Assignment operators
16 Comma operator (sequential evaluation) Left to right

General guidelines for priorities

« Comma < Assignment < Logic < Relation < Arithmetic < Unary
» Parentheses operators have the highest precedence.
 All unary operators have higher precedence than binary operators .

» Assignment operators have the lowest precedence,
except for the comma operator .
* |If you can't remember the precedence of operators, use parentheses.
e (x<=10)&& (y>=20)
» Relational and logical operators have lower precedence than arithmetic
operators .
*X+2==y+3
» Relational operators have higher precedence than logical operators.
Therefore, you can use sentences like the following with confidence.
x>y &&z>y//Sameas (x>vy) && (z>vy)

General guidelines for priorities

« among logical operators, the && operator has higher precedence than the ||
operator .

*X<5]|[x>10&& x>0

« Sometimes the order of evaluation of operators can be quite confusing.
In X *y +w *y It is unclear which of x * y and w * y will be computed first.

Combination Rules

* If there are multiple operators with the same priority, the rule

for which one should be performed first

<€

Combination direction (left — right)

(Operation)

Combination direction (right — left)

(Assignment)

Example of a combination rule

Example of a combination rule

y=a%b/c+d*(e—7F);

:_"_1{:

(2)

Example

#include < stdio.h >

int main(void)

{
int x=0, y=0;
int result;

result=2>3116>7;
printf ("%d" , result);

result =2 || 3&& 3>2;
printf ("%d" , result);

result =x=vy=1;
printf ("%d" , result);

result = - ++x + y--;
printf ("%d" , result);

return O;

