
Ch.7 Loops​

What you will learn in this chapter

•Understanding the concept of repetition

•while loop

•do-while loop

•for loop

•break and continue statements

The repetition structure allows you

to repeat a series of processes.

First, understand the concept of

repetition and learn about the three

repetition structures provided in C.

repeat

• Repetitive tasks are essential in programs.

• Iteration is repeating the same process multiple times.

Why is repetition necessary ?

Q) Why is a repeating structure necessary ?

A) Many tasks on a computer can be processed efficiently and quickly by

handling repetitive tasks.

Why is repetition important ?

printf ("Hello World! \n");

printf ("Hello World! \n");

printf ("Hello World! \n");

printf ("Hello World! \n");

printf ("Hello World! \n");

for (i = 0; i < 5; i++)

printf ("Hello World! \n");

repeat structure

• A structure that loops until a certain condition is satisfied.

Types of loops

Repeat until the record is shortened by 1 second Run 10 laps around the track

while statement

• Repeats execution of statements while a given condition is satisfied.

Condition

True True

False False

Hasn't it been more than

30 minutes?

Sentence

“while” statement

Conditional statement

If the condition is true, the statement is

executed repeatedly.

Example

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Repeat condition

Repeat content

while statement execution process

True

True

True

True

True

False

Number of repeat Value of i

while statement execution process

True

True

True

True

True

False

Number of repeat Value of i

The loop stops when

the condition becomes false.

// Program to print multiplication tables using while loop

#include < stdio.h >

int main(void)

{

int n;

int i = 1;

printf (" The string you want to print : ");

scanf ("%d" , &n);

while (i <= 9)

{

printf ("%d*%d = %d \n" , n, i , n* i);

i ++;

}

return 0;

}

Example #1

Enter the number you want to print : 9

9*1 = 9

9*2 = 18

9*3 = 27

....

9*9 = 81

// Program to output square values using a while loop

#include <stdio.h>

int main(void)

{

int n;

printf("===================================\n");

printf(" n n squared \n");

printf("===================================\n");

n = 1;

while (n <= 10)

{

printf("%5d %5d\n" , n, n*n);

n++;

}

return 0;

}

Example #2

==============

n square of n

==============1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 100

Example #3

• Program to calculate the sum from 1 to n

Enter an integer : 3

The sum of 1 to 3 is

Practice

Example #3

Enter an integer : 3

The sum of 1 to 3 is

Example #5

• the five values entered by the user and print the result.
(Repeat input)

Enter a value : 10

Enter a value : 20

Enter a value : 30

Enter a value : 40

Enter a value : 50

The total is 150 .

// Sum program using while loop

#include <stdio.h>

int main(void)

{

int i, n, sum;

i = 0; // initialize variables

sum = 0; // Initialize variables

while (i < 5)

{

printf(" Enter a value : ");

scanf("%d" , &n);

sum = sum + n; // Same as sum += n ;

i++;

}

printf(" The total is %d .\n" , sum);

return 0;

}

Example #5

Enter a value : 10

Enter a value : 20

Enter a value : 30

Enter a value : 40

Enter a value : 50

The total is 150 .

if and while statements

if (condition)

{

...

...

}

while (condition)

{

...

...

}

It is executed only once
when the condition is met.

If the condition is met, it is executed
repeatedly multiple times.

Causion: while loops

int i = 1;

while (i < 10)

{

printf (" Looping \n"):

i--;

}

int i = 0;

while (i < 3)

printf (" Looping \n"):

i++;

The variable decreases,
not increases

Not included in a
repeating loop
Because no {}.

True and False

#include < stdio.h >

int main(void)

{

int i = 3;

while (i)

{

printf ("%d is true ." , i);

i--;

}

printf ("%d is false ." , i);

}

3 is true .

2 is true .

1 is true .

0 is false .

3 is true .

2 is true .

1 is true .

0 is false .

Conventional form

caution

If you use a semicolon(;) at the end of the while condition, only NULL statements are repeated.

A statement that only contains a semicolon is called a NULL statement

Since the value of the expression is 2,

it is always true and thus causes an

infinite loop.

Sentinel (Using sentinel value)

• Sentinel : A special value that signals the end of input data.

Problem of calculating the average of
grades (How to design & implement)

• Let's write a program that receives an arbitrary number of
grades from the user, calculates their average, and then
prints them .

• -1 is used as a sentinel value .

Enter

Enter your grade : 10

Enter your grade : 20

Enter your grade : 30

Enter your grade : 40

Enter your grade : 50

Enter your grade : -1

The average score is 30.000000 .

The problem of finding the average
of grades

Find the average of the

grades .

1. Initialize the required variables .

2. Enter the grades, calculate the total,

and count the number of grades.

3. Calculate the average and display it

on the screen .

1. Initialize the required

variables .

(1) Initialize sum to 0 .

(2) Initialize n to 0 .

(3) Initialize grade to 0 .

The problem of finding the average
of grades

2. Enter the grades, calculate

the total, and count the

number of grades .

while if the score is not less than 0

(1) Read the grade from the user

and save it in grade.

(2) Accumulate this score in sum.

(3) n is increased by one.

3. Calculate the average and

display it on the screen .

(1) Divide sum by n and store it in

average.

(2) Print the average on the screen.

// Program to find the average grade using a while loop

#include < stdio.h >

int main(void)

{

int grade, n;

float sum, average;

// Initialize the necessary variables .

n = 0;

sum = 0;

grade = 0;

printf (" Enter a negative number to end grade entry \n");

Sentinel Example 1/2

// Enter the grades , calculate the total, and count the number of students .

while (grade >= 0)

{

printf (" Enter your grades : ");

scanf ("%d" , &grade);

sum += grade;

n++;

}

sum = sum - grade; // remove the last data .

n--; // Remove the last data .

// Calculate the average and print it to the screen .

average = sum / n;

printf (" The average of the grades is %f .\n" , average);

return 0;

}

Sentinel Example 2/2

Enter

Enter your grade : 10

Enter your grade : 20

Enter your grade : 30

Enter your grade : 40

Enter your grade : 50

Enter your grade : -1

The average score is 30.000000 .

“do...while” statement

Repeated sentence

If the condition is true, the loop continues.

“do-while” statement

• Executes the loop statement at least once.

sentence

condition

Less than

10 times?

Example #1

• Let's write a program that adds the entered numbers until
the user enters 0 using the do...while statement .

Enter an integer : 10

Enter an integer : 20

Enter an integer : 30

Enter an integer : 0

Sum of numbers = 60

Example #1

// Add numbers until the user enters 0 .

#include <stdio.h>

int main(void)

{

int number, sum = 0;

// The loop body is executed at least once .

do

{

printf (" Enter an integer : ");

scanf ("%d" , &number);

sum += number;

} while (number != 0);

printf (" Sum of numbers = %d \n" , sum);

return 0;

}

Example #2

• do..while statement is widely used in input processing.

1--- Create new

2--- Open file

3--- Close file

Select one : 1

Selected menu =1

Example #2
Practice

for loop

• A structure that repeats a set number of times

Less than

10 times?
Initial

statement

Initial statement

Conditional statement

Structure of “for” statement

Init statement Condition Increase/decrease

Repeative sentence

Initial expression, conditional expression,
incremental expression
• Initial

• The initialization expression is executed only once before starting the repeating
loop. It is mainly used to initialize variable values .

• Conditional expression

• A formula that checks the condition for repetition. If the value of this expression
becomes false, the repetition stops .

• Incremental

• After one loop execution is complete, the increment expression is executed.

for (i = 0; i < 5; i ++)

printf ("Hello World!\n");

Initial

Conditional expression

Incremental

Print

#include < stdio.h >

int main(void)

{

int i ;

for (i = 0; i < 5; i ++) // i increases

printf ("Hello World!\n");

return 0;

}

Example

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

The execution process of “for”

The execution process of “for”

Example #2

• Let's write a program that adds integers from 1 to 10 and
finds the sum .

Sum of integers from 1 to 10 = 55

Practice

Example #2

Sum of integers from 1 to 10 = 55

Example #3

• Let's draw a box like the following on the screen using the *
character .

* *
* *
* *
* *
* *

Example #3

// Drawing a square using repetition

#include < stdio.h >

int main(void)

{

int i;

printf ("**********");

for (i = 0;i < 5; i++)

printf ("* *");

printf ("**********");

return 0;

}

* *
* *
* *
* *
* *

Relationship between while loop and
for loop

{

Initial

while (Conditional

expression
)

}

Sentence 1 ;

Sentence 2 ;

Incremental ;

for (Initial ;

Conditional expression;

Incremental)

{

}

Sentence 1 ;

Sentence 2 ;
...

...

Variables can be declared inside “for” loops

for (int i =0; i < 10; i ++) {

…

}

Tip

Which of the three loops for, while, do...while should I use?

It's partly a matter of personal taste. A general criterion for choosing is that if you

know how many times the loop will repeat, a for loop is slightly more convenient

than a while loop. That is, you are less likely to forget to increment the loop control

variable than with a while loop. If there is only a condition and the exact number of

repetitions is not known, a while structure is better. If there are statements that

must be executed at least once, a do...while structure is better.

Also, while and for are structures that check the condition before repeating, while

do...while executes first and then checks the repeat condition. In general cases, not

special cases, it is better to check the condition before repeating. It is the same as

doing a thorough preliminary investigation before executing anything.

Various forms of increasing and
decreasing formulas

for (int i = 10; i > 0; i --)

printf ("Hello World!\n");

for (int i = 0; i < 10; i += 2)

printf ("Hello World!\n");

for (int i = 1; i < 10; i *= 2)

printf ("Hello World!\n");

for (int i = 0; i < 100; i = (i * i) + 2)

printf ("Hello World!\n");

Using subtraction

Increase by 2

Multiply by 2

Any formula is possible

Various forms of increasing and
decreasing formulas

for (; i<100; i++)

printf("Hello World!\n");

for (i = 0, k = 0; i < 100; i++)

printf("Hello World!\n");

for (printf (" loop start "), i = 0; i < 100; i ++)

printf ("Hello World!\n");

One part may be missing

two or more variables

Any formula is possible

for (; ;)

printf ("Hello World!\n");

Infinite loop

for (i = 0; i < 100 && sum < 2000; i++)

printf ("Hello World!\n");

Any complex expression can be

a conditional expression.

Nested loop

• loop : A loop that is located within another loop.

Example #1

• The following example prints the * symbol in a square shape

// Program to print * symbols in a square shape using

#include < stdio.h >

int main(void)

{

int x, y;

for (y = 0;y < 5; y++)

{

for (x = 0;x < 10; x++)

printf ("*");

printf ("\n");

}

return 0;

}

Example #1

Example #2

• Let's change the previous example a little so that it prints as
follows . If you analyze the execution result in detail, you can
see that y * are printed on the yth line.

*

**

Practice

Example #2

*

**

Infinite loop

• In a conditional control loop, sometimes the program repeats
itself infinitely . This is known as an infinite loop . This is a
problem because when an infinite loop occurs, the program
cannot escape from it .

• But sometimes, intentionally Infinite loops are used because,
for example, a traffic light control program must repeat
infinitely.

When infinite loops are useful

• It is especially used in cases where the conditions for exiting
the loop are tricky. For example, let's say you need to exit
the while loop if the number entered by the user is a
multiple of 3 or a negative number.

“break” statement

• break statement is used to exit a repeating loop .

The only case you need “goto” statement

• If a problem occurs inside a nested loop , you can use goto
to quickly exit the whole loop.

• break ​ If you use it , you can only break one loop.

for(i =0;i<10;i++){

for(j=1;j<=10;j++){

// some work

break;

// some work

}

}

goto statement

#include < stdio.h >

int main(void)

{

int x, y;

for (y = 1; y < 10000; y++)

{

for (x = 1; x < 50; x++)

{

if (_ kbhit ()) goto OUT;

printf ("*");

}

printf ("\n");

}

OUT:

return 0;

}

continue statement

• Print all integers from 0 to 10, excluding those that are multiples
of 3.

#include < stdio.h >

int main(void)

{

int i ;

for (i=0 ; i<10 ; i++)

{

if (i%3 == 0)

continue;

printf ("%d " , i);

}

return 0;

}

1 2 4 5 7 8

“continue” statement

Q & A

