Ch.7 Loops

What you will learn Iin this chapter

eUnderstanding the concept of repetition
ewhile loop

The repetition structure allows you

«do-while loop to repeat a series of processes.
«for loop First, understand the concept of
ebreak and continue statements repetition and learn about the three

repetition structures provided in C.

repeat

* Repetitive tasks are essential in programs.
* [teration is repeating the same process multiple times.

Bring it again?

Why Is repetition necessary ?

Q) Why is a repeating structure necessary ?

A) Many tasks on a computer can be processed efficiently and quickly by
handling repetitive tasks.

Why Is repetition important ?

printf ("Hello World! \n")
printf ("Hello World! \n")
printf ("Hello World! \n");
("Hello World! \n")
(")

Hello World! \n"

printf
printf

for (i=0; 1< 5; i++)

printf ("Hello World! \n");

repeat structure

* A structure that loops until a certain condition is satisfied.

Program progress = ==---

e

ol

Types of loops

Repeat until the record is shortened by 1 second Run 10 laps around the track

while loop

while statement

 Repeats execution of statements while a given condition is satisfied.

Hasn't it been more than
1 30 minutes?

False
Condition

True

o€

"while” statement

x while statement N
Synta Conditional statement

while(i <10) { If the condition is true, the statement is

ted tedly.
printf("Hello World!\n");— exeetied iepealedy

it++;

Example

#include <stdio.h>
int main(void)

{
Nt =10;
W Repeat condition
while(
{ / Repeat content
printf("Hello World! \n");
i++;
}
return 0; Hello World!
¥ Hello World!

Hello World!

Hello World!
Hello World!

while statement execution process

B

while(1 <5)¢e———___

{
printf("Hello World! \n");
\\\1++; f{//////é

/

=

while(1 <5 J)e———__

{ N
printf("Hello World! \n");

\ i++; »
} _,____ - i

while(1 < 5)¢ ——
{

J g\

(printf(“"Hello WOrld!\y"),
'\\i++;
) =

S —

I\;umber of repeat Value of i (I<5) Repeat or no
#1 0 True ‘ repeat
#2 1 tl True ‘ repeat
3 2 [True ‘ repeat
4 3 True repeat
5 4 True repeat
#6 5 False stop

while statement execution process

phile(i < 5)¢———__

{ %
/" printf("Hello World! \n")j
K\\i++; _JX////A
) e =

while(1 < 5 J)e——___
{
." printf("Hello World! \n");

\ 1+4; =
%t e

\

while('i<5)

{ i —
/printf("Hello World! \n");

1++;

} =

Number of repeat

Value of i i (i<5)

Repeat or nof

#1 0 tir True repeat
#2 1 True repeat
#3 2 True repeat
#4 3 True repeat
#5 4 True repeat
#6 5 flé False stop

The loop stops when
the condition becomes false.

Example #1

// Program to print multiplication tables using while loop
#include < stdio.h >
int main(void)
{
int n;
inti=1;
printf (" The string you want to print : ");
scanf ("%d" , &n);
while (i <=9)
{
printf ("%d*%d = %d \n" , n, i, n*i);
1 ++;
} .
Enter the number you want to print : 9
return O; J1=9
urn-v; 9*2 = 18
3 9*3 = 27
9%9 = 81

Example #2

{

// Program to output square values using a while loop
#include <stdio.h>

int main(void)

int n;

printf("===================================\n");
printf("===================================\n");

n=1;
while (n <= 10)

{
printf("%5d %5d\n" , n, n*n);

n++;

}

return O;

Example #3

« Program to calculate the sum from 1 to n

Enter an integer : 3
The sumof1to 3is

1) Prepare an empty container. (2) Put numbers 1 to n into the container. (3 Print the number of coins in the container.

Example #3

. . - Enter an integer : 3
#include <stdio.h> The sum of 1 to 3 is

int main(void)
{

int i, n, sum; // variable declaration

printf(" Enter an integer :"); // Output input guidance message
scanf("%d" , &n); // Input integer value

i =1; // initialize variable
sum = 0;

while (i <= n)

{
sum +=1i; // Same as sum =sum + i ;
i++; // Sameasi=i+1.
}
printf(" The sum from 1 to %d is %d \n" , n, sum);
return 0;

Example #5

« the five values entered by the user and print the result.
(Repeat input)

Enter a value : 10
Enter a value : 20
Enter a value : 30

Enter a value : 40

Enter a value : 50
The total is 150 .

Example #5

// Sum program using while loop
#include <stdio.h>

int main(void)

{

int i, n, sum;

i = 0; // initialize variables
sum = 0; // Initialize variables
while (i < 5)

{
printf(" Enter a value : ");
scanf("%d" , &n);
sum = sum + n; // Same as sum +=n ;
T++;
}

printf(" The total is %d .\n" , sum);

return 0;

Enter a value :
Enter a value :
Enter a value :

Enter a value :

Enter a value :

10
20
30
40
50

The total is 150 .

If and while statements

if (condition)
{
<
3
4
while (condition)
{
50
3
/4

It is executed only once
when the condition is met.

If the condition is met, it is executed
repeatedly multiple times.

Causion: while loops

inti=1;
while (i < 10)
{

printf (" Looping \n"):

L

i

= [he variable decreases,
not increases

inti=0;
while (i < 3)
printf (" Looping \n"):

L

i++;

L Not included in a
repeating loop
Because no {}

True and False

{

#include < stdio.h >
int main(void)

inti=3;
while (i)
{

printf ("%d is true .” , i);
=

}

printf (“%d is false ." , i);

3 is true .
2 is true .

1 is true .
0 is false .

Conventional form

while(i != @) while(i)
{ {

¥ ¥

caution

beware of errors

If you use a semicolon(;) at the end of the while condition, only NULL statements are repeated.
A statement that only contains a semicolon is called a NULL statement

= It is treated as one sentence and only this is repeated.
while (1<[10T?’//

e r— |
. l'H“,J It doesn't repeat.

while(i = 2)\ Since the value of the expression is 2,
{

it is always true and thus causes an
infinite loop.

Sentinel (Using sentinel value)

« Sentinel : A special value that signals the end of input data.

” This is the end of the data....

rﬁx

O...} :
A 3

Sentinel

NS,

o - L

\‘.l
)
Lo

b

Problem of calculating the average of
grades (How to design & implement)

* Let's write a program that receives an arbitrary number of
grades from the user, calculates their average, and then
prints them .

e -1 is used as a sentinel value .

Enter

Enter your grade : 10
Enter your grade : 20
Enter your grade : 30

Enter your grade : 40
Enter your grade : 50
Enter your grade : -1
The average score is 30.000000 .

he problem of finding the average
of grades

1. Initialize the required variables .

2. Enter the grades, calculate the total,
and count the number of grades.

3. Calculate the average and display it
on the screen .

Find the average of the
grades .

(1) Initialize sumto O .
(2) Initialize nto 0 .
(3) Initialize grade to O .

1. Initialize the required
variables .

of grades

2. Enter the grades, calculate
the total, and count the
number of grades .

he problem of finding the average

while if the score is not less than 0

(1) Read the grade from the user
and save it in grade.

(2) Accumulate this score in sum.
(3) nis increased by one.

3. Calculate the average and
display it on the screen .

(1) Divide sum by n and store it in
average.

(2) Print the average on the screen.

Sentinel Example 1/2

// Program to find the average grade using a while loop
#include < stdio.h >

int main(void)
{
int grade, n;
float sum, average;

// Initialize the necessary variables .
n=0;

sum = 0;

grade = 0;

printf (" Enter a negative number to end grade entry \n");

Sentinel Example 2/2

// Enter the grades , calculate the total, and count the number of students .
while (grade >= 0)

{
printf (" Enter your grades : ");
scanf ("%d" , &grade);
sum += grade;
n++;
}

sum = sum - grade; // remove the last data .
--; // Remove the last data .

// Calculate the average and print it to the screen .
average = sum / n;
printf (" The average of the grades is %f .\n" , average);

Enter

Enter your grade : 10
} Enter your grade : 20
Enter your grade : 30

return O;

Enter your grade : 40
Enter your grade : 50
Enter your grade : -1
The average score is 30.000000 .

"do..while” statement

do...while statement

- <—

_ Repeated sentence

/
.

/ ¥ ¥ \v

\} wh1 (condition); ———— If the condition is true, the loop continues.

"do-while” statement

 Executes the loop statement at least once.

|

Less than sentence
10 times?
N o
"“3)‘ X
B
Cov false
V) condition
true
false

Example #1

e Let's write a program that adds the entered numbers until
the user enters 0 using the do..while statement .

Enter an integer : 10
Enter an integer : 20
Enter an integer : 30

Enter an integer : 0
Sum of numbers = 60

Example #1

// Add numbers until the user enters O .
#include <stdio.h>
int main(void)

{

int number, sum = 0;

// The loop body is executed at least once .
do

{

printf (“ Enter an integer : ");
scanf ("%d" , &humber);
sum += number;
} while (number != 0);

printf (“ Sum of numbers = %d \n" , sum);

return 0;

Example #2

 do..while statement is widely used in input processing.

1--- Create new
2--- Open file
3--- Close file

Select one : 1
Selected menu =1

Example #2

// Menu using do..while statement
#include <stdio.h>

int main(void)

{

inti=0;

do

{
printf("1--- New \n");
printf("2--- Open file \n");
printf("3--- Close file \n");
printf(" Choose one .\n");

scanf("%d" , &i);
}while (i<1 |]i>3);

printf(” Selected menu =%d\n" ,i);
return O;

for loop

A structure that repeats a set number of times

Less than Iniial
10 times?

false true

repetitive sentancas

false

!

Initial statement

A

Conditional statement =

true

ncramenta

Ox—

Structure of “for” statement

for &

Init statement Condition Increase/decrease

for(1i=0; ' i<5; i+) {
printf("Hello World!");«— Repeative sentence

}

Initial expression, conditional expression,
Incremental expression

* Initial
* The initialization expression is executed only once before starting the repeating
loop. It is mainly used fo initialize variable values .

« Conditional expression

* A formula that checks the condition for repetition. If the value of this expression
becomes false, the repetition stops .

* Incremental
« After one loop execution is complete, the increment expression is executed.

Conditional expression
for 1—0 1<5 i++)

Example

Print
#include < stdio.h >

int main(void)

{

inti;

for (i=0;1<5;1++)//iincreases
printf ("Hello World!\n");

return O;

3

Hello World!
Hello World!
Hello World!

Hello World!
Hello World!

The execution process

® @
_—
for(i=0 : 1i<5 ; 1i++)
_f L
O] |(4)

\ ;
printf("Hello World!\n");
F’

=

-
for(i=0 : i<5 ; 1i++)
@ e
;‘ |
printf("Hello World!\n");

@
* * K ’ \ .
for(1=0 ; 1<5 ; 1++)
s L
@ | |\ (3
L /

printf("Hello World!\n");

b/

of "for”

0 Hello World!

£1 Hello World!
Hello World!

Hello World!
— Hello World!
1 Hello World!

The execution process of “for”

- - F
for(1=0 ; 1<5
gg;f

\ |

@

L

\\.
;0 14+) 38—
L

I| :. :—3? l

printf(“Hello World!\n");

[—

—

[3 %
for(i=0 ; 1i<5 ; 1i++)
[®
2 |(3)
\ S

printf("Hello World!\n");

L/’

I.'j'.l B I{{;

_---\.‘\\' K—"—.-- - "-.\\\‘
for(i=0 ; i<5 ; i++)

printf("Hello World!\n");

[—

Hello
Hello
Hello
Hello

Hello
Hello
Hello
Hello
Hello

Hello
Hello
Hello
Hello
Hello

World!
World!
World!
World!

World!
World!
World!
World!
World!

World!
World!
World!
World!
World!

Example #2

* Let's write a program that adds integers from 1 to 10 and
finds the sum .

Sum of integers from 1 to 10 = 55

Example #2

// Integer sum program using repetition
#include <stdio.h>

int main(void)

{

int i, n, sum;
printf(" Enter an integer :"); // Output input guidance message
scanf("%d" , &n); // Input integer value

sum = 0;
for (i = 1;i <= n;i++)
{

sum +=i; // same as sum = sum + i;

3

printf(* Sum of integers from 1 to 10 = %d\n" ,sum);

return O;

Sum of integers from 1 to 10 = 55

Example #3

* Let's draw a box like the following on the screen using the *
character .

kkkkkkkkkk
* %
* %
* %

* %

* %

kkhkkkkkkkkk

Example #3

// Drawing a square using repetition
#include < stdio.h >

int main(void)
{
int i;
pr.intf (Mk kkkddkbditn);

for (i = 0;i < 5; i++)
printf ("™ *");

pr.intf (T e X);

return 0;

kkkkkkkkkk

* %

* %

* %

* %

* %

kkkkkkkkkk

Relationship between while loop and

for loop

Initial
whi

{

—

le (Conditiong—)\

expression

o

Sentence 1

Sentence 2

Incremental =,

\
for (| iitial

)

Incremental)

Sentence 1

Sentence2 |,

Conditional expressicl)n

Variables can be declared inside “for” loops

for (inti=0;i<10;i++){

3

Tip

Which of the three loops for, while, do...while should | use?

It's partly a matter of personal taste. A general criterion for choosing is that if you
know how many times the loop will repeat, a for loop is slightly more convenient
than a while loop. That is, you are less likely to forget to increment the loop control
variable than with a while loop. If there is only a condition and the exact number of
repetitions is not known, a while structure is better. If there are statements that
must be executed at least once, a do...while structure is better.

Also, while and for are structures that check the condition before repeating, while
do...while executes first and then checks the repeat condition. In general cases, not
special cases, it is better to check the condition before repeating. It is the same as
doing a thorough preliminary investigation before executing anything.

Various forms of increasing and

decreasing formulas

for (inti=10;i>0;i--)
printf ("Hello World!\n");

for (inti=0;i<10;i+=2)
printf ("Hello World!\n");

for (inti=1;i<10;1i%=2)
printf ("Hello World!\n");

for (inti=0;i<100;i=(i*1)+2)
printf ("Hello World!\n");

Using subtraction

Increase by 2

Multiply by 2

Any formula is possible

Various forms of increasing and

decreasing formulas

for (55)
printf ("Hello World!\n");

for (; i<100; i++)
printf("Hello World!\n");

for i=0, k=0;i<100; i++)
printf("Hello World!\n");

for (printf (" loop start "), i =0; i< 100; i ++)
printf ("Hello World!\n"),

for (i=0; 1< 100 && sum < 2000; i++)
printf ("Hello World!\n");

Infinite loop

One part may be missing

two or more variables

Any formula is possible

Any complex expression can be
a conditional expression.

Nested loop

* loop : A loop that is located within another loop.

outer loop
for(i=0;i<6;i++)
" ™ \ {
\
for(j=0;3<3;i++)
{

N
) \ 1

ITT7 ..nl” merker | F

Example #1

 The following example prints the * symbol in a square shape

k*kkkkkkkkk
k*kkkkkkkkk
k*kkkkkkkkk

k*kkkkkkkkk

k*kkkkkkkkk

Example #1

#include < stdio.h >

int main(void)

{

int x, y;

/“for (y = 0;y < 5; y++)
{

for (x = 0;x < 10; x++)
printf (™");
printf ("\n");

N

return 0;

// Program to print * symbols in a square shape using

*kkkkkkkkk

*kkkkkkkkk

*kkkkkkkkk

*kkkkkkkkk

*kkkkkkkkk

Example #2

* Let's change the previous example a little so that it prints as
follows . If you analyze the execution result in detail, you can
see that y * are printed on the yth line.

Example #2

#include < stdio.h >
int main(void)
{
int x, y;
for (y = 1;y <= 5; y++)
{ for (x = 0; X < y; X++)
{
printf (™");
3

printf ("\n"); // Executes whenever

3

return 0;

Infinite loop

* In a conditional control loop, sometimes the program repeats
itself infinitely . This is known as an infinite loop . This is a
problem because when an infinite loop occurs, the program
cannot escape from it .

« But sometimes, intentionally Infinite loops are used because,
for example, a traffic light control program must repeat
infinitely.

infinite loop statement

while (1) {

if (condition)
break; # Stop repetition.
if (condition)

continue; # Start the next iteration.

When infinite loops are useful

* It is especially used in cases where the conditions for exiting
the loop are tricky. For example, let's say you need to exit
the while loop if the number entered by the user is a
multiple of 3 or a negative number.

while((x % 3 1= 0) && (x >= 0)) {

K

while (1) {
if x%3 == 0) break;
if (x<0) break;

"break” statement

* break statement is used to exit a repeating loop .

“break;
reak;
'ﬂ.'ﬂ"_
o
— o

The only case you need "goto” statement

* If a problem occurs inside a nested loop , you can use goto
to quickly exit the whole loop.

* break If you use it, you can only break one loop.

for(i =0;i<10;i++){
for(j=1;3<=10;3++){
// some work

break;
// some work
L @

el

goto statement

{

UT:

#include < stdio.h >

int main(void)

int x, vy;

for (y = 1; y < 10000; y++)
{

for (x = 1; x < 50; x++)

{

kkkx

kkkx

kkkkkkkkkkk

if (_ kbhit ()) goto OUT;

printf (™");
}
printf ("\n");
}

eturn 0;

continue statement

* Print all integers from 0 to 10, excluding those that are multiples

of 3.

#include < stdio.h >

int main(void)
{ . .
inti;
for (1=0 ; 1<10 ; 1++)
{
1f (1%3==0)
continue;
printf ("%d ", 1);
§

return O;

}

124578

/

"continue” statement

for (initial expression;

while (conditional expression) do ep—
{ { Incremental
R —
sentence: sentence; {
e
sentence; sentence; sentence;
continue continue sentence;
—
sentence; sentence; continue
} } while (condition); sentence;

