
Ch.8 Functions



What you will learn in this chapter

•Modularization
•Concept of function, role
•How to write a function

•Return value
•Transfer of acquisition
•Why use functions?

Large programs 

should be written 

by breaking down 

the overall problem 

into simpler, more 

understandable 

functions .



Concept of function

• Function : It is like a black box that takes input, 
performs a specific task, and returns a result.



The function Why is it needed?

• The same code is used in multiple places .

I have similar code, 

Can I combine them into one?



The function Why is it needed?

• By writing functions, you can create identical code in many place 



Features of functions

• A function is a collection of instructions to perform a specific task

• Functions have distinct names

• A function performs a specific task

• A function can take input and return a result



Pros of function

• Using functions can help prevent duplication of code .

• Once a function is written, it can be reused multiple times .

• Using functions allows you to divide your entire program 
into modules, making the development process easier, 
more organized, and easier to maintain.

Function

Program



Types of functions

Since the function I want isn’t available,

I have to create it myself.

These functions are provided

By default.

Function

User-defined functions



Definition of a function

Function definition

Function body

Return type     Function name    Parameter (none)



• Return type
• The return type refers to the type of data that a function returns to the caller 

after completing processing.

• Function name
• A function name can be any name that follows the rules for identifiers .

• It is a good idea to use ( verb + noun ) that implies the function's 
functionality.

Definition of a function

Function to calculate the average

Function name



Tip: Function's length

Is there a limit to the length of a function?

In C, there is no limit to the length of a function. This means that you 

can put many statements in a single function. However, it is not 

good if the function length becomes too long. Basically, a function 

should perform only one task. If the function length becomes too 

long, it should be considered as performing more than one task. 

Therefore, it is better to split the function. So, what is the appropriate 

length? 

Of course, there is no absolute standard, but it is good to keep it 

from exceeding 30 lines.



Function call
• A function call is writing the name of a function, 
such as print_stars( ) .

• The statements within a function are not executed at all 
until they are called. When a function is called, the currently 
executing code is suspended for a moment, and execution moves 
to the called function, where the statements within the function   
body are executed sequentially.

• When the execution of the called function is finished, it returns to 
the calling location and resumes execution of the code that was   
paused.

It’s a function call, I have 

to go and come back quickly.



A function can be called multiple times.



Example

• the print_stars () function twice to output the following :

*******************************

Hello World!

*******************************



Example

#include <stdio.h>

void print_stars()

{

for( int i = 0; i < 30; i++)

printf("*");

}

int main( void )

{

print_stars ();

printf("\nHello World!\n");

print_stars ();

printf("\n");

return 0;

}

Function call

Function call



Parameters and return values

Structure of a function

Return type     Function name    Parameters

Function body



Parameters and return values



Arguments and parameters

Argments Parameters

● An argument is a value actually passed to a function by the calling program.

● A parameter is a variable that receives this value.



Arguments and parameters

• If there are no parameters, you can write void in the parameter  
position, like print_stars(void), or write nothing, like print_stars()

• The arguments may vary each time the function is called. (…)

• The number of parameters must match exactly. If the number of 
parameters and the number of arguments do not match, 
an error will occur that is very difficult to find.



Return value

● The return value is the result of the operation that the function returns 

to the place where it called.

● To return a value, write a formula after the return statement and 

the value of the formula will be returned.

● There can be multiple arguments, but only one return value.

(possible to return multiple values with pointer-parameter or structure)



Example

• max() function written above to find the larger value among 
the values entered by the user.

Enter two integers : 10 20
The larger value is 20 .

Practice



Example



Lab: Inputting an integer get_integer () 
function

• Let's write a function get_integer () that prints an input guidance 
message and takes an integer as input and returns it to us.



get_integer () function 

// Function that receives an integer from the user

#include < stdio.h >

int get_integer ( void )

{

int value;

printf ( " Enter an integer : " );

scanf ( "%d" , &value);

return value;

}



Lab: add() function to calculate the sum 
of integers

• Let's create a function that takes two integers and calculates   
their sum. We need to decide on a name for the function first.



Lab: Program to calculate the sum of integers 

• Let's calculate and print the sum of the integers received 
from the user using the get_integer () written above.

Enter an integer : 10
Enter an integer : 20
The sum of the two numbers is 30 .

Practice



Example



Combination calculation function

• Calculate the combination by calling the 
factorial calculation function and the 
get_integer () function.

Enter an integer : 10
Enter an integer : 3
C(10, 3) = 120

n = total number of items

r = number of items chosen

combination is a way of selecting items 
from a group, where the order does not 
matter.



// Example of finding mathematical combination values
#include < stdio.h >

// Returns the factorial value
int factorial( int n )
{

int i , result = 1;

for (i = 1; i <= n ; i++)
result *= i ; // result = result * i

return result;
}
// Calculate 
int combination( int n, int r)
{

return (factorial(n)/(factorial(r) * factorial(n-r)));
}

Example 



// Get a value from the user and return it
int get_integer ( void )
{

int n;

printf ( " Enter an integer : " );
scanf ( "%d" , &n);
return n;

}

int main( void )
{

int a, b;
a = get_integer ();
b = get_integer ();

printf ( "C(%d, %d) = %d \n" , a, b, combination(a, b));
return 0;

}



Function prototype

• When I compile the code, an error occurs. Why?

#include < stdio.h >

int main( void )

{

printf ( " Celsius is % lf and Fahrenheit is % lf . \n" , 36.0, c_to_f (36.0));

return 0;

}

double c_to_f ( double c_temp )

{

return 9.0 / 5.0 * c_temp + 32;

}



Function prototype

• Function prototyping : Telling the compiler about a function  
in advance

#include < stdio.h >

double c_to_f ( double c_temp ); // Function prototype

int main( void )

{

printf ( " Celsius is % lf and Fahrenheit is % lf . \n" , 36.0, c_to_f (36.0));

return 0;

}

double c_to_f ( double c_temp )

{

return 9.0 / 5.0 * c_temp + 32;

}



Function prototype

• A function prototype is something that tells you the function’s 
name, parameters, and return type before the function is defined.

• A function prototype is the same as adding a semicolon(;) to the 
function header. However, in a function prototype, you don’t 
need to write the parameter names. You only need to write the 
parameter data types.



Example without using function 
prototype

int compute_sum ( int n)

{

int i ;

int result = 0;

for ( i = 1; i <= n; i ++)

result += i ;

return result;

}

int main( void )

{

int sum;

sum = compute_sum (100); 

printf (“sum=%d \n”, sum);

}

If the function definition comes before the function call, 

there is no need to define a function prototype .

But this is not the general method .



reference

link error

When compiling a source file to create an executable file, a link error may occur. 

A link error occurs when the compiler cannot find a function. 

In other words, a link error occurs when a programmer uses an undefined 

function. 

When a link error occurs, the function name is displayed in the error message. 

Therefore, you should check the error message to see if the function is definitely 

defined.



Library functions

• Library function : Functions provided by the compiler
• Standard Input/Output

• Mathematical Operations

• String processing

• Time handling

• Error Handling

• Searching and Sorting Data



Random number function

• A random number is a number that is generated randomly 
without any pattern .

• Random numbers It is essential in cryptography, simulations, 
games, etc.

• rand()
• Function to generate random numbers
• Generate a random number from 0 to RAND_MAX



Random number function
rand():

● Returns a pseudo-random number between 0 and RAND_MAX (a large constant, like 

32767 or higher).

● Each call gives the next number in the sequence.

● If you don't call srand(), the sequence will always be the same when you run the 

program.

srand(unsigned int seed):

● Seeds the random number generator with a starting point (seed).

● Using the same seed always gives the same sequence of rand() numbers.

● Common usage: srand(time(NULL)); to seed with the current time, so you get 

different random numbers each time you run.



Example : Generating Lotto Numbers

• let's write a program to generate lottery numbers. Lotto numbers 
are made up of six numbers from 1 to 45.

Bonus num



41 18467 6334 26500 19169 15724

#include < stdio.h >

#include < stdlib.h >

int main( void )

{

int i ;

for ( i = 0; i < 6; i ++)

printf ( "%d " , rand());

return 0;

}

Practice Code

Generate an integer between 

0 and 32767



Limited to 1 to 45

• printf ("%d ", 1+(rand()%45));

• But every time I run it, the same random number is always 
generated .

42 18 35 41 45 20



Different random number each time
• If you want to generate different random numbers each time, 
you need to use a different seed .

• srand ((unsigned)time( NULL ) );

#include < stdlib.h >

#include < stdio.h >

#include < time.h >

#define MAX 45

int main( void )

{

int i ;

srand ( ( unsigned )time( NULL ) );

for ( i = 0; i < 6; i ++ )

printf ( "%d " , 1+rand()%MAX );

return 0;

}

the seed is to use the current time  

as the seed , since the current time  

will change each time you run it .



Standard library functions 
(mathematical functions )

• In this chapter, we will look at library functions that perform 
numerical calculations. These library functions allow you to 
perform complex arithmetic operations .

• Prototypes for mathematical functions are in the header file 
math.h. Mathematical functions generally have parameters 
and return values of type double .



Math library functions



floor() and ceil() functions

double result, value = 1.6;

result = floor(value); // result is 1.0 .

printf ("%lf ", result);

result = ceil(value); // result is 2.0 .

printf ("%lf ", result);



fabs ()

• fabs( ) takes a real number and returns its absolute value .

printf (" The absolute value of 12.0 is %f\n", fabs (12.0));

printf (" The absolute value of -12.0 is %f\n", fabs (-12.0));



pow() and sqrt ()

printf ("10 to the power of 3 is %.0f.\n", pow(10.0, 3.0));

printf (" The square root of 16 is %.0f.\n", sqrt (64));

10 to the power of 3 is 1000.
The square root of 16 is 4.



// Trigonometry function library

#include < math.h >

#include < stdio.h >

int main( void )

{

double pi = 3.1415926535;

double x, y;

x = pi / 2;

y = sin( x );

printf ( "sin( %f ) = %f\n" , x, y );

y = cos( x );

printf ( "cos( %f ) = %f\n" , x, y );

}

cos(double x), sin(double x), tan(double 
x)

A standard library containing several 
mathematical functions.

sin( 1.570796 ) = 1.000000

cos(1.570796) = 0.000000



Etc Function



#include < stdlib.h >

#include < stdio.h >

int main( void )

{

system( " dir " );

printf ( " Press any key \n" );

_ getch ();

system( " cls " );

return 0;

}

Example

The volume in drive C has no name .

Volume Serial Number : C870-52ED

C:\Users\kim\source\repos\hello\hello directory

2022-10-16 08:41 AM <DIR> .

2022-10-16 08:41 AM <DIR> ..

2022-10-16 08:41 160 hello.c

2022-10-16 07:25 AM 6,618 hello.vcxproj



Why use functions?

• Eliminates duplication of source code .

• Once a function is created, it can be used when creating other 
programs .

• Able to break down complex problems into simpler parts.



Complex programs are divided into functions

int main( void )

{

// Code to read a list of numbers from the keyboard

....

// Code to sort numbers by size

....

// Code that prints a list of sorted numbers on the screen

...

}

int main( void )

{

...

read_list (); // Function to read a list of numbers from the 

keyboard

sort_list (); // Function to sort a list of numbers by size

print_list (); // Function that prints a list of numbers to the screen

...

}



Mini Project: Writing an engineering calculator 
program (Refer ch8-9.c)

• Let's create an engineering calculator that can calculate cosine 
values. Let's add features that are not implemented yet  
in the challenge problem .

1. Factorial
2. Sign
3. Log (base 10)
4. Square root
5. Permutation (nPr)
6. Combination ( nCr )
7. End
Please select : 1
Enter an integer : 10
Result = 3628800

Practice 

Only 

functions



#include < stdio.h >
#include < math.h >

int menu( void )
{

int n;
printf ( "1. Factorial \n" );
printf ( "2. Sign \n" );
printf ( "3. log (base 10)\n" );
printf ( "4. Square root \n" );
printf ( "5. Permutation (nPr)\n" );
printf ( "6. Combination ( nCr )\n" );
printf ( "7. End \n" );
printf ( " Please select : " );
scanf ( "%d" , &n);
return n;

}



void factorial()
{

long long n, result=1, i ;
printf ( " Enter an integer : " );
scanf ( "% lld " , &n);
for (i = 1; i <= n; i++)

result = result * i ;
printf ( " result = % lld \n\n" , result);

}

void sine()
{

double a, result;
printf ( " Enter the angle : " );
scanf ( "% lf " , &a);
result = sin(a);

printf ( " result = % lf \n\n" , result);
}

void logBase10()
{

double a, result;
printf ( " The real number Enter : " );
scanf ( "% lf " , &a);
if (a <= 0.0)

printf ( " Error \n" );
else {

result = log10(a);
printf ( " result = % lf \n\n" , result);

}
}



int main( void )
{

while (1) {
switch (menu()) {

case 1: factorial(); break ;
case 2: sine(); break ;
case 3: logBase10(); break ;
case 7: printf ( " Quitting .\n" ); return 0;
default :printf ( " Bad choice .\n" );break ;

}
}

}



Practice 

Only 

functions



Modularization

• There should be maximum interaction within a module and minimum 
interaction between modules. 
If the connections between modules are complex, modularization is 
wrong .



Q & A


