
Ch.9 Functions and
Variables

What you will learn in this chapter

•Understanding the
concept of repetition
•Variable properties

•Global and local
variables

•Automatic and static
variables
•Recursive call

In this chapter, we will
focus on the

relationship between
functions and variables.

We will also look at
recursive calls, where a

function calls itself .

Variable properties

• Variable properties : name , type , size , value + range ,
life time , linking
• Scope : The scope in which a variable is available, its visibility

• Lifetime : The time it exists in memory

• Linkage : Status of connection with variables in other areas

Generate

Extinction

Connection

Scope of variables

Function

Function

Local

variables
Local

variables

Global

variables

Scope of

variables

Global

variables

Local

variables

Global Variables and local variables

Global variables: defined outside of a function

Global variables: defined inside of a function

Local variables

• A local variable is a variable declared within a block.

The scope in which local variable x

can be used

The scope in which global variable x

can be used

Error because y was used outside the block

where it was declared

Local variables must not

leave the block in which they

are declared.

Local variable declaration location

• In C , it can be declared anywhere inside a block !!

You can declare any number of local variables,

even in the middle of a block

Local variables with the same name

The names can be the same

as long as the blocks are different.

Life time of local variables

Life

Time

Local variables are

automatically destroyed

when the block in which

they are declared end.

#include < stdio.h >

int main(void)

{

int i ;

for (i = 0; i < 5; i ++)

{

int temp = 1;

printf ("temp = %d\n" , temp);

temp++;

}

return 0;

}

Local variable example

Whenever each block is called,
temp is created and initialized

temp = 1

temp = 1

temp = 1

temp = 1

temp = 1

#include < stdio.h >

int main(void)

{

int temp;

printf ("temp = %d\n" , temp);

return 0;

}

Since it is not initialized,

it has a garbage value.

Initial value of local variable

• Parameters defined in the header part of a function are also a type
of local variable. That is, they have all the characteristics of local
variables.

• What makes it different from local variables is that they are
initialized with the argument values when the function is called.

int inc (int counter)

{

counter++;

return counter;

}

Function parameters

Parameters are
also a kind of
local variable

Function parameters

#include < stdio.h >

int inc (int counter);

int main(void)

{

int i ;

i = 10;

printf (" Before calling the function i =%d\n" , i);

inc (i);

printf (" After calling the function i =%d\n" , i);

return 0;

}

void inc (int counter)

{

counter++;

}

Parameters are also
a type of local variable

Call by value
(call by value)

Before calling a function i =10

After calling the function i =10

Global variables

• A global variable is a variable declared outside any function.

• The scope of a global variable is the entire source file.

Function

Function

Local

variables

Local

variables

Global

variables

#include <stdio.h>

int A;

int B;

int add()

{

return A + B;

}

int main(void)

{

int answer;

A = 5;

B = 7;

answer = add();

printf (“ % d + % d = % d\n”, A, B, answer);

return 0;

}

Initial values and life time of global
variables

Scope
of global
variables Global variables

The initial value is 0

5 + 7 = 12

Global Initial value of variable

#include < stdio.h >

int counter;

int main(void)

{

printf ("counter = % d\n" , counter);

return 0;

}

counter = 0

Global variables are

initialized to 0 by the

compiler when the program

runs .

Use of global variables

#include < stdio.h >

int x;

void sub();

int main(void)

{

for (x = 0; x < 10; x++)

sub();

}

void sub()

{

for (x = 0; x < 10; x++)

printf ("*");

}

What will the output be ?
Sub function is executed

once!

Use of global variables

• Common data used in almost all functions is made into global
variables.

• Data that is only used by some functions should be passed as
function arguments rather than as global variables.

Survival period

• Static allocation :

• Keep it alive while the program runs

• Automatic allocation :

• Created when entering a block

• Destroys when exiting the block

Static allocation means that the variable exists

throughout the execution time,

while automatic allocation means that the variable

is destroyed when the block ends.

Static

allocation

Automatic

allocation

Survival period

• Factors that determine survival time

• Where the variable is declared

• Storage type specifier

• Storage type specifier

• auto

• register

• static

• extern

Concept

only

static & extern

Keyword Meaning Effect

static Local to the file (for global

variables) or function (for local

variables)

Limits visibility inside the same file;

lifetime is the entire program run

extern Declares a variable or function that

is defined elsewhere
Tells the compiler "this variable is

somewhere else" (another file)

● static = "only usable inside this file" (or "remember between calls" for local

variables)

● extern = "this is declared elsewhere, trust me"

static & extern

1. static
Global scope (file):

If you declare a global variable or function static, it is private to that .c file — it cannot be

seen or used by other files.

// file1.c
static int counter = 0; // Only visible in file1.c

Local scope (function):

If you declare a local variable static, it keeps its value between function calls.

void foo() {
static int x = 0;
x++;
printf("%d\n", x);

}

Every time foo() runs, x remembers its previous value instead of resetting.

static & extern

2. extern

● Used to declare a global variable or function that is defined in another file.

// file1.c
int global_value = 42; // Define it

// file2.c
extern int global_value; // Just tell compiler it exists
void use_value() {

printf("%d\n", global_value);
}

Without extern, the compiler would not know what global_value is in file2.c.

Visibility

• static
- Inside a function : The variable remembers its value between function calls.

void counter() {
static int count = 0;

count++;
printf("%d\n", count);

}

- Outside a function: Limits visibility to the same file (not accessible from other files)

static int globalVar = 100;

• extern
- Used to declare a variable or function that is defined in another file
- Used for cross-file access

// file1.c
int x = 10;

// file2.c
extern int x; // Use the variable from file1.c

Storage type specifier “auto”

• Specifies a storage type that is automatically created at the location
where the variable is declared, and is automatically destroyed when
the block is exited.

• Local variables become automatic variables even if auto is omitted.

int main(void)

{

auto int sum = 0;

int i = 0;

...

...

}

All of them are automatic
variables, created when the
function starts and
destroyed when it ends .

Storage type specifier “static”
#include < stdio.h >

void sub() {

static int scount = 0;

int acount = 0;

printf (" scount = %d\t" , scount);

printf (" acount = %d\n" , acount);

scount ++;

acount ++;

}

int main(void) {

sub();

sub();

sub();

return 0;

}

If you add
Local variables become static variables

scount = 0 acount = 0

scount = 1 acount = 0

scount = 2 acount = 0

Storage type specifier “register”
• Store variables in registers .

register int i;

for (i = 0;i < 100; i++)

sum += i;

Variables are stored in registers

inside the CPU

volatile

• The volatile specifier is used when the hardware changes the
value of a variable from time to time.

volatile int io_port ; // Variable connected to hardware

void wait(void) {

io_port = 0;

while (io_port != 255)

;

}

If you specify it as volatile,

Compiler will stop optimizing.

connection

• Linkage : Linking variables belonging to different scopes
• External connection

• Internal connection

• No connection

• Only global variables can have associations .

range

connection

External connection

• global variables using extern

Defined externally Defined externally

Connection example

10

static in front of function

f2() was called .

Referencing global variables using
extern in a block

• extern is also used to access global variables from a block .

#include < stdio.h >

int x = 50;

int main(void)

{

int x = 100;

{

extern int x;

printf("x= %d\n" , x);

}

return 0;

}

x= 50

What storage type do you use ?

• In general, it is recommended to use the auto-save type.

• If the value of a variable needs to remain the same even
after
the function call ends, use local static

• If it is a variable that needs to be shared among many
function, it is an external reference variable.

Variable parameters

• A feature where the number of parameters can vary.

int sum (int num , ...

)

The number of
parameters may change
with each call.

Variable parameters
#include < stdio.h >

#include < stdarg.h >

int sum(int , ...);

int main(void)

{

int answer = sum(4, 4, 3, 2, 1);

printf (" The sum is %d .\n" , answer);

return (0);

}

int sum(int num , ...)

{ int answer = 0;

va_list argptr ;

va_start (argptr , num);

for (; num > 0; num --) {

int temp = va_arg (argptr , int);

printf("va_arg num=%d (%d)\n", num, temp);

answer += temp;

}

va_end (argptr);

return (answer);

}

Number of parameters

The sum is 10 .

Main function with variable arguments

#include <stdio.h>

int main(int argc, char *argv[]) {

printf("Number of arguments: %d\n", argc);

for (int i = 0; i < argc; i++) {

printf("Argument %d: %s\n", i, argv[i]);

}

return 0;

}

gcc args.c -o args

./args hello world 123

What is recursion ?

• A function can also call itself. This is called recursion.

Important

Calculating factorial

• Factorial Programming : Calculate the factorial of (n-1)!
by calling the function you are currently writing again (recursive call)

int factorial(int n)

{

if (n <= 1) return (1);

else return (n * factorial(n-1));

}

3n

Structure of a factorial function

• The recursive algorithm consists of a part that recursively calls
itself and a part that stops the recursive call.

n! = n × (n-1) × (n-2) × ... × 1

Calculating factorial

• Factorial calling order

factorial(3)

= 3 * factorial(2)

= 3 * 2 * factorial(1)

= 3 * 2 * 1

= 3 * 2

= 6

factorial(2)

{

if (2 <= 1) return 1;

else return (2 * factorial(2-1)

);

}

factorial(1)

{

if(1<= 1) return 1;

.....

}

①

②③

④

factorial(3)

{

if (3 <= 1) return 1;

else return (3 * factorial(3-1)

);

}

Factorial calculation

Enter an integer : 5

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

5 !

Practice

Q & A

