
ＡＩ＆Ｂｉｇ
Ｄａｔａ

m
ir
ic

a
n
v
a
s
.c

o
m

Ｃ Programming (W3)

Welcome!!
Please check attendance individually.

(Mobile App)

Things to do today

Language01

Programming02

Variables03

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Operators04

ＡＩ＆Ｂｉｇ
ＤａｔａUnicode

C was originally designed for ASCII (1-byte characters), but modern applications require Unicode

support to handle characters from multiple languages. Unicode works through different encoding formats

such as UTF-8, UTF-16, and UTF-32.

Unicode is a universal character set that assigns a unique number to every character in every language.

ex) 'A' → U+0041 (Just number)

'가' → U+AC00

'あ' → U+3042

Unicode defines the meaning of characters but not how they are stored in memory or files.

Range: U+0000 ~ U+10FFFF → a total of 1,114,112 possible code points.

Within this range, Unicode is designed to represent all the world’s scripts, emojis, symbols, and even ancient

characters.

Method of expression using UTF-8:

- U+0000 ~ U+007F → 1 byte

- U+0080 ~ U+07FF → 2 bytes

- U+0800 ~ U+FFFF → 3 bytes

- U+10000 ~ U+10FFFF → 4 bytes

ＡＩ＆Ｂｉｇ
ＤａｔａLanguage

Unicode Encoding in C

Encoding: a way to encode Unicode characters as bytes, so they can be stored or transmitted.

Unicode characters can be represented using:

● UTF-8 (variable-length, 1–4 bytes) → Most widely used (default in Linux/macOS)

- ASCII character: 1 byte

- European character: 2 bytes

- Korean/Chinese etc: 3 ~ 4 bytes

- 1 byte: Basic ASCII characters (e.g. A, B, C, 0-9) → 0xxxxxxx

- 2 bytes: European languages, Korean initial consonants (e.g. é, ñ, ü, 한) → 110xxxxx 10xxxxxx

- 3 bytes: Most Korean characters, Hanja, some emojis → 1110xxxx 10xxxxxx 10xxxxxx

- 4 bytes: Extended characters and emojis (e.g. 😀, 🏆) → 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Think over

I am trying to write a C program that takes

two people's ages and calculates their sum,

following the input instructions.

ＡＩ＆Ｂｉｇ
ＤａｔａWhat is Programing?

• Program operation process

ME

HE

SHE

23

21 44+
declaration input processing output

ＡＩ＆Ｂｉｇ
ＤａｔａWhat is Programing?

• Program operation process

ME

int Bicycle, Umbrella;

If(weather == “rainy”)

{

printf(“Umbrella”);

}

else

{

printf(“Bicycle”);

}

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Think over

You are on an island with nothing. You want

to cook pizza or spaghetti. Think about what

you need to prepare. Imagine a list of things

you need.

Let’s cook

Making pizza base

Cooking pizza

ＡＩ＆Ｂｉｇ
ＤａｔａThe real appearance of printf function

•Source code : https://github.com/lattera/glibc/tree/master/stdio-common

Let’s make pizza

Potato

Beef

Pepperoni

What should I consider?

1. Select dough(가루반죽)

Thin / Thick

What kinds of wheat flour(밀가루)

2. Select sauce / cheese / topping

Tomato, Olive oil, Garlic, Herb, BBQ Sause

Mozzarella, Gorgonzola, …

Potato, Pepperoni, Beef, ….

3. Baking condition

Oven – 15 mins

Pan - 30 mins

* Crust / Base

Programming Process

- The programming process is similar to the cooking process.

1. Problem Analysis & Requirements Definition (Preparation)

2. Selecting Data & Tools (Gathering Ingredients)

4. Debugging & Testing (Tasting & Adjusting)

5. Deployment & Release (Serving the Dish)

6. Maintenance (Feedback & Improvement)

3. Coding, Implementation (Cooking)

Programming Process

1. Problem Analysis & Requirements Definition

(Programming) Understanding the problem and defining requirements

• Decide what program to create

• Define the necessary features and functionalities

(Cooking) Deciding what dish to make before cooking

• Choose a menu and find a recipe

• Identify the ingredients needed

Example:

Program: "Create a user login system”

Dish: "Make pasta"

Programming Process

2. Selecting Data & Tools (Gathering Ingredients)

(Programming) Choosing the programming language, tools, and data

• Decide on the programming language (Python, Java, C++, etc.)

• Select necessary libraries and frameworks, IDE

(Cooking) Preparing ingredients before cooking

• Gather pasta, olive oil, garlic, tomato sauce, and noodles

• Prepare kitchen tools like a frying pan and pot

Example:

Program: C + Standard Lib + VSCode + Github

Dish: Using spaghetti with tomato sauce

Programming Process

3. Coding, Implementation (Cooking)

(Programming) Writing the actual code to build the program

• Define variables, write functions, and implement algorithms

• Be mindful of errors and bugs

(Cooking) Preparing and cooking the dish

• Chop the ingredients (garlic), boil the pasta

• Control the heat while cooking the sauce and mixing everything

Example:

Program: Writing a void main(): function and implementing “hello world!”

Dish: Fry the garlic, boil the sauce and cook with the noodles

1. Design (Define requirement)

2. Write source code

3. Compile & Link

4. Execute a program

5. Debugging

6. Store & Maintaining

Programming Process

4. Debugging & Testing (Tasting & Adjusting)

(Programming) Checking if the program works correctly and fixing errors

• Find & fix bugs

• Test with different inputs to ensure reliability

(Cooking) Tasting the dish and adjusting flavors

• If it’s too bland, add salt; if it’s too salty, add water

• Adjust seasoning for the best taste

Example:

Program: Fixing a bug where login credentials are not verified correctly

Dish: Adjusting the seasoning by adding salt or pepper

Programming Process

5. Deployment & Release (Serving the Dish)

(Programming) Deploying the program for users

• Storing at github or publishing an app

• Sharing it with users

(Cooking) Serving the finished dish

• Plating the food in an appealing way

• Serving it to family or customers

Example:

Program: Deploying the website on AWS or Github

Dish: Serving the pasta to guests

Programming Process

6. Maintenance (Feedback & Improvement)

(Programming) Updating and improving the program based on user feedback

• Adding new features and security updates

• Continuous maintenance and bug fixes

(Cooking) Improving the dish based on feedback

• If guests say the dish is too salty, adjust it next time

• Experiment with new recipes to enhance flavors

Example:

Program: Optimizing login speed if it's slow

Dish: "The pasta is overcooked" → Reduce boiling time

Operators

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Operator Description Example

+ Addition a + b

- Subtraction a - b

* Multiplication a * b

/ Division a / b

% Modulus (remainder) a % b

Operator Description Example

== Equal to a == b

!= Not equal to a != b

> Greater than a > b

< Less than a < b

>= Greater or equal a >= b

<= Less or equal a <= b

1. Arithmetic Operators

Used to perform basic mathematical operations.

2. Relational (Comparison) Operators

Used to compare two values.

Operators

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Operator Description Example

&& Logical AND a && b

` `

! Logical NOT !a

Operator Description Example

= Assign a = b

+= Add and assign a += b

-= Subtract and assign a -= b

*= Multiply and assign a *= b

/= Divide and assign a /= b

%= Modulus and assign a %= b

3. Logical Operators

Used to combine or invert boolean expressions.

4. Assignment Operators

Used to assign values to variables.

ＡＩ＆Ｂｉｇ
ＤａｔａSpecial Characters

s{} (Curly braces - Used for code blocks)

[] (Square brackets - Used for arrays)

() (Parentheses - Used for functions and expressions)

; (Semicolon - Statement terminator)

: (Colon - Used in labels and ternary operator)

(Hash - Preprocessor directive)

" (Double quotes - String literals)

' (Single quotes - Character literals)

\ (Backslash - Escape sequences)

// (Single-line comment)

/* */ (Multi-line comment)

ＡＩ＆Ｂｉｇ
ＤａｔａOperator

s

+ (Addition)

- (Subtraction)

* (Multiplication, Asterisk)

/ (Division)

% (Modulus / Remainder)

= (Assignment)

== (Equal to, Comparison)

!= (Not equal to)

> (Greater than)

< (Less than)

>= (Greater than or equal to)

<= (Less than or equal to)

&& (Logical AND)

|| (Logical OR)

! (Logical NOT)

& (Bitwise AND / Address-of operator, Ampersand)

| (Bitwise OR)

^ (Bitwise XOR)

~ (Bitwise Complement)

<< (Left shift)

>> (Right shift)

+= (Addition assignment)

-= (Subtraction assignment)

*= (Multiplication assignment)

/= (Division assignment)

%= (Modulus assignment)

&= (Bitwise AND assignment)

|= (Bitwise OR assignment)

^= (Bitwise XOR assignment)

<<= (Left shift assignment)

>>= (Right shift assignment)

++ (Increment)

-- (Decrement)

-> (Structure pointer access)

. (Structure member access)

?: (Ternary conditional operator)

, (Comma operator)

ＡＩ＆Ｂｉｇ
ＤａｔａHomework 2: Basic operations

• //

Debugging

• Practice with debugger

• VSC (launch.json, tasks.json)

ＡＩ＆Ｂｉｇ
Ｄａｔａ

m
ir
ic

a
n
v
a
s
.c

o
m

See you next week!
DO NOT miss the classes

