C Programming (W3)

Welcomell

Please check attendance individually.
(Mobile App)

Things to do today

O1

02

03

04

Language

Programming

Variables

Operators

AI &B1g
guﬁrsﬁ Data

UnICOde uuuuuuuuuuuuuuuuu Data

C was originally designed for ASCII (1-byte characters), but modern applications require Unicode
support to handle characters from multiple languages. Unicode works through different encoding formats
such as UTF-8,

Unicode is a universal character set that assigns a unique number to every character in every language.
ex) 'A' - U+0041 (Just number)
'7F — U+ACO00
'H' — U+3042
Unicode defines the meaning of characters but not how they are stored in memory or files.
Range: U+0000 ~ U+10FFFF — a total of 1,114,112 possible code points.

Within this range, Unicode is designed to represent all the world’s scripts, emojis, symbols, and even ancient
characters.

Method of expression using UTF-8:

U+0000 ~ U+007F — 1 byte
U+0080 ~ U+07FF — 2 bytes
U+0800 ~ U+FFFF — 3 bytes
U+10000 ~ U+10FFFF — 4 bytes

OAL AL &Big
Language e Data

Unicode Encoding in C

Encoding: a way to encode Unicode characters as bytes, so they can be stored or transmitted.
Unicode characters can be represented using:

e UTF-8 (variable-length, 1-4 bytes) — Most widely used (default in Linux/macOS)
- ASCII character: 1 byte
- European character: 2 bytes
- Korean/Chinese etc: 3 ~ 4 bytes

- 1 byte: Basic ASCII characters (e.g. A, B, C, 0-9) — OxXxXxXxXxxX

- 2 bytes: European languages, Korean initial consonants (e.g. €, i, U, F) — 110xxxxx 10XXXXXX

- 3 bytes: Most Korean characters, Hanja, some emojis — 1110xxxx 10xxxxxx 10XXXXXX

- 4 bytes: Extended characters and emojis (e.g. &, &) — 11110xxx 10xxxxxX 10XXXXXX TOXXXXXX

- AI &B1ig
ﬁuﬁmm Data

Think over

| am trying to write a C program that takes
two people's ages and calculates their sum,
following the Input instructions.

: : OAL AI&Big
What is Programing? s Data

 Program operation process

declaration Input processing output

What Is Programing?

 Program operation process

— . OO

?
W

ME »

- AI &B1ig
gﬂﬁr Data

Int Bicycle, Umbrella;

If(weather == "rainy”)

{
printf("Umbrella”);

}

else

{
printf("Bicycle™);

}

- AI &B1ig
gﬂﬁrmm ata

Think over

You are on an island with nothing. You want
to cook pizza or spaghetti. Think about what
you need to prepare. Imagine a list of things
you need.

Let’s cook

—
'

Making pizza base

i
A

! -
(-

"

- @,

Cooking pizza

| - OAL Al &Big
The real appearance of printf functon === et

*Source code : https://github.com/lattera/glibc/tree/master/stdio-common

Let’s make pizza

Potato What should | consider?

1. Select dough(ﬂ—?— Hh3)

* Crust / Base

Thin / Thick
What kinds of wheat flour(2 7t %)

2. Select sauce / cheese / topping

Tomato, Olive oil, Garlic, Herb, BBQ Sause
Mozzarella, Gorgonzola, ...
Potato, Pepperoni, Beef,

3. Baking condition

Oven — 15 mins
Pan - 30 mins

Programming Process

- The programming process is similar to the cooking process.

1. Problem Analysis & Requirements Definition (Preparation)

e

2. Selecting Data & Tools (Gathering Ingredients)

e

3. Coding, Implementation (Cooking)

e

4. Debugging & Testing (Tasting & Adjusting)

e

5. Deployment & Release (Serving the Dish)

e

6. Maintenance (Feedback & Improvement)

Programming Process

1. Problem Analysis & Requirements Definition

(Programming) Understanding the problem and defining requirements
 Decide what program to create

« Define the necessary features and functionalities

(Cooking) Deciding what dish to make before cooking
« Choose a menu and find a recipe

« |dentify the ingredients needed

Example:
Program: "Create a user login system”

Dish: "Make pasta”

Programming Process

2. Selecting Data & Tools (Gathering Ingredients)

(Programming) Choosing the programming language, tools, and data
« Decide on the programming language (Python, Java, C++, etc.)

« Select necessary libraries and frameworks, IDE

(Cooking) Preparing ingredients before cooking
« Gather pasta, olive oil, garlic, tomato sauce, and noodles

* Prepare kitchen tools like a frying pan and pot

Example:
Program: C + Standard Lib + VSCode + Github

Dish: Using spaghetti with tomato sauce

Programming Process

N 2
3. Cading, Implementation (Cooking) @

(Programming) Writing the actual code to build the program

« Define variables, write functions, and implement algorithms

« Be mindful of errors and bugs

Write source code
Compile & Link
Execute a program

(Cooking) Preparing and cooking the dish
 Chop the ingredients (garlic), boil the pasta

O0hwWNE

« Control the heat while cooking the sauce and mixing everything

Example:
Program: Writing a void main(): function and implementing “hello world!”

Dish: Fry the garlic, boil the sauce and cook with the noodles

Programming Process

4. Debugging & Testing (Tasting & Adjusting)

(Programming) Checking if the program works correctly and fixing errors
* Find & fix bugs

« Test with different inputs to ensure reliability

(Cooking) Tasting the dish and adjusting flavors
« Ifit's too bland, add salt; if it's too salty, add water

« Adjust seasoning for the best taste

Example:
Program: Fixing a bug where login credentials are not verified correctly

Dish: Adjusting the seasoning by adding salt or pepper

Programming Process

5. Deployment & Release (Serving the Dish)

(Programming) Deploying the program for users
« Storing at github or publishing an app

e Sharing it with users

(Cooking) Serving the finished dish
« Plating the food in an appealing way

e Serving it to family or customers

Example:
Program: Deploying the website on AWS or Github

Dish: Serving the pasta to guests

Programming Process

6. Maintenance (Feedback & Improvement)

(Programming) Updating and improving the program based on user feedback
« Adding new features and security updates

« Continuous maintenance and bug fixes

(Cooking) Improving the dish based on feedback
« |f guests say the dish is too salty, adjust it next time

« Experiment with new recipes to enhance flavors

Example:
Program: Optimizing login speed if it's slow

Dish: "The pasta is overcooked" — Reduce boiling time

AI &Big
OAL]

WODSONG UNIVERSITY D a t

Operators
Operator Description Example
1. Arithmetic Operators R Addition 2 + b
Used to perform basic mathematical operations. _ Subtraction 1 - b
* Multiplication a *b
/ Division a /b
% Modulus (remainder) a % b
2. Relational (Comparison) Operators .
Operator Description Example
Used to compare two values. __ Equal to 9 == b
I = Not equal to a !=b
> Greater than a>b
< Less than a= Greater or equal a >=b
<= Less or equal a <=b

AI &Big
OAL]

WODSONG UNIVERSITY D a t
Operators
3. Logica| Operators Operator Description Example
Used to combine or invert boolean expressions. && Logical AND a && b

N\ AN

! Logical NOT la

Operator Description Example

4. Assignment Operators _ Assign 2 = b
Used to assign values to variables. i Add and assign 2 += b
-= Subtract and assign a -=b

*= Multiply and assign a *= b

/= Divide and assign a /=b

%= Modulus and assign a %= b

] OAL AI &B1g
Special Characters S Dat e

{ } (Curly braces - Used for code blocks)

[] (Square brackets - Used for arrays)

() (Parentheses - Used for functions and expressions)
; (Semicolon - Statement terminator)

. (Colon - Used In labels and ternary operator)

(Hash - Preprocessor directive)

" (Double gquotes - String literals)

" (Single quotes - Character literals)

\ (Backslash - Escape sequences)

/ / (Single-line comment)

/* */ (Multi-line comment)

Operator

+ (Addition)

- (Subtraction)

* (Multiplication, Asterisk)
/ (Division)

% (Modulus / Remainder)
= (Assignment)

== (Equal to, Comparison)
= (Not equal to)

> (Greater than)

< (Less than)

>= (Greater than or equal to)
<= (Less than or equal to)
&& (Logical AND)

| | (Logical OR)

I (Logical NOT)

& (Bitwise AND / Address-of operator, Ampersand)

| (Bitwise OR)
A (Bitwise XOR)
~ (Bitwise Complement)
<< (Left shift)
>> (Right shift)
+= (Addition assignment)
-= (Subtraction assignment)
*= (Multiplication assignment)
/= (Division assignment)
%= (Modulus assignment)
&= (Bitwise AND assignment)
| = (Bitwise OR assignment)
A= (Bitwise XOR assignment)
<<= (Left shift assignment)
>>= (Right shift assignment)
++ (Increment)
- - (Decrement)
-> (Structure pointer access)
. (Structure member access)
7 . (Ternary conditional operator)
, (Comma operator)

O/\: AI &B1ig
D a

IIIIIIIIIIIIIIIII

t a

. . OAL AT &Big
Homework 2: Basic operations e Date

o/l

Debugging

* Practice with debugger
* VSC (launch.json, tasks.json)

See you next week!
DO NOT miss the classes

