
ＡＩ＆Ｂｉｇ
Ｄａｔａ

m
ir
ic

a
n
v
a
s
.c

o
m

Ｃ Programming (W5)

Welcome!!
Please check attendance individually.

(Mobile App)

Things to do today

Ch.3, Ch.4 ~ Ch.501

Standard Input / Output02

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Convention of C language:
- Comment /* */, //
- Indentation
- Clean & readable code

Syntax rule of C language
- int a;
- Compile error

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Notice – Modify what I mentioned

Build Process (The build process consists of compilation and linking.)

- Compilation

. Translating source code (.c files) into object code (.o or .obj files).

. Each source file is compiled independently by the compiler.

- Linking

. Combining object files and libraries into a final executable

(.exe on Windows, no extension on Linux).

. Resolves external references (e.g., function calls, global variables).

The entire workflow = Compilation + Linking (and sometimes preprocessing, optimization,

packaging).

1. Determine what the input is

- scanf, fgets, getchar, sscanf

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Problem solving with stdio.h

User scenario

> 1

> 1 3.14

> name age email

> name age email introduction

> name,age,email,introduction

> Name:abc, Age:20, Email:abc@email.com, Introduction: I am a boy

> word sentence number etc

mailto:abc@email.com

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Standard Output (printf)

1. Syntax of printf() ： Grammar and Structure of language

- The first argument (format) is a string containing text and format specifiers

- The ellipsis (...) represents a variable number of arguments, which are inserted into the format specifier

#include <stdio.h>

int printf(const char *format, ...);

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Standard Output (printf)

Field width and precision

When printing using printf() , you can specify the size of the field in which data is printed .

Width 10, Right aligned

Width 10, Left aligned

6 decimal places

3 decimal places

3 decimal places

3 decimal places

ＡＩ＆Ｂｉｇ
ＤａｔａStandard Output (printf)

3. Format of printf()

- Width and Alignment

You can specify a minimum width for the output using numbers.

Default is right-aligned; to left-align, use -

printf("%10d\n", 123); // Right-aligned, width 10

printf("%-10d\n", 123); // Left-aligned, width 10

- Precision for Floating-Point Numbers

printf("%.2f\n", 3.14159); // Prints with 2 decimal places

- Padding with Zeros

printf("%05d\n", 42); // Pads with zeros up to 5 digits

Practice

Practice

Practice

ＡＩ＆Ｂｉｇ
ＤａｔａStandard Output (printf)

4. Using Escape Sequences of printf()

- printf supports escape sequences to control output formatting

Practice

ＡＩ＆Ｂｉｇ
ＤａｔａStandard Output (printf)

5. Printing Multiple Values

- You can print multiple values in a single printf call by passing multiple

Practice

5. Return Value of printf

-printf returns the number of characters printed (excluding \0) Practice

ＡＩ＆Ｂｉｇ
ＤａｔａStandard Output (puts)

1. Syntax of puts()

- puts prints a string (str) to the console and automatically appends a newline (\n) at the end.

- It is simpler and safer than printf("%s\n", str); because it does not require format specifiers.

- It returns a non-negative integer on success and EOF (-1) on failure.

#include <stdio.h>

int puts(const char *str);

Practice

ＡＩ＆Ｂｉｇ
ＤａｔａStandard Output (putchar)

1. Syntax of putchar()

- putchar prints a single character (ch) to the console.

- It is simpler and safer than printf("%s\n", str); because it does not require format specifiers.

- It returns a non-negative integer on success and EOF (-1) on failure.

#include <stdio.h>

int putchar(int ch);

Practice

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Standard Input

Standard input reads data from an input device, typically the keyboard.

It uses functions like scanf(), getchar(), and fgets() to read user input

[Keyboard typing]

↓

[OS input buffer (stdin)]

↓ (flush when Enter pressed)

[Program function: scanf/getchar/fgets...]

↓

[Stored in variable]

User input: hello⏎
stdin buffer: 'h' 'e' 'l' 'l' 'o' '\n' '\0'

ＡＩ＆Ｂｉｇ
Ｄａｔａ

1. Syntax of scanf()

- scanf reads formatted input from stdin (usually the keyboard).

- It requires format specifiers to determine the type of input.

- It stops reading when encountering whitespace (spaces, tabs, newlines, etc.).

- it remains ‘\n’ in buffer. To avoid → getchar();

#include <stdio.h>

int scanf(const char *format, ...);

Practice

Standard Input (scanf)

ＡＩ＆Ｂｉｇ
Ｄａｔａ

2. Key Characteristics of scanf()

- Can read multiple values at once.

- Requires the address-of operator (&) for non-string variables.

- Stops reading at the first whitespace character (space, tab, or newline).

- Can cause buffer issues if not used carefully (e.g., failing to handle newline characters properly).

If the user types hello⏎:

- The OS puts hello\n in the stdin buffer.

- scanf("%s", str) reads hello and stops at the newline.

- The \n stays in the buffer.

Standard Input (scanf)

ＡＩ＆Ｂｉｇ
Ｄａｔａ

2. Key Characteristics of scanf()

int a, b;

scanf("%d%d", &a, &b); // works the same as "%d %d“

Input: 1 2 (multiple spaces or tabs or newline)

- First %d → 1

- Whitespace skipped automatically

- Second %d → 2

Standard Input (scanf)

ＡＩ＆Ｂｉｇ
Ｄａｔａ

1. Syntax of getchar()

- getchar reads a single character from stdin.

- It includes whitespace characters like spaces and newlines.

- Returns the character as an unsigned char (cast to int) or EOF on error.

#include <stdio.h>

int getchar(void);

Practice

Standard Input (getchar)

ＡＩ＆Ｂｉｇ
Ｄａｔａ

problem: Buffer Retains \n
If getchar is used after scanf, it may read the leftover newline (\n).

* Find the problem below

Find the problems

Standard Input (Handling Newline (\n) Issues)

#include <stdio.h>

int main() {

int num;

char ch;

printf("Enter a number: ");

scanf("%d", &num); // Reads a number

printf("Enter a character: ");

ch = getchar(); // Problem: This reads the newline ('\n') from the buffer!

printf("Number: %d, Character: %c\n", num, ch);

return 0;

}

ＡＩ＆Ｂｉｇ
Ｄａｔａ

1. Syntax of fgets()

- fgets reads a whole line from the input (up to n-1 characters).

- It includes spaces and stops at a newline (\n).

- It prevents buffer overflow by specifying the maximum number of characters.

- It includes ‘\n’ → hello\n\0

#include <stdio.h>

char *fgets(char *str, int n, FILE *stream);

Practice

Standard Input (fgets)

ＡＩ＆Ｂｉｇ
Ｄａｔａ

2. Key Characteristics of fgets()

- Reads a full line, including spaces.

- Stops when newline (\n) or buffer limit (n-1 characters) is reached.

- Unlike scanf, it does not skip spaces.

- Adds a newline character (\n) if the user presses Enter.

Standard Input (fgets)

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Comparison of scanf, getchar, fgets

-

Standard Input

ＡＩ＆Ｂｉｇ
Ｄａｔａ

When to use which?

-

Standard Input

ＡＩ＆Ｂｉｇ
Ｄａｔａ

How each function handles Enter (\n)?

-

Standard Input

Operators

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Operator Description Example

+ Addition a + b

- Subtraction a - b

* Multiplication a * b

/ Division a / b

% Modulus (remainder) a % b

Operator Description Example

== Equal to a == b

!= Not equal to a != b

> Greater than a > b

< Less than a < b

>= Greater or equal a >= b

<= Less or equal a <= b

1. Arithmetic Operators

Used to perform basic mathematical operations.

2. Relational (Comparison) Operators

Used to compare two values.

Operators

ＡＩ＆Ｂｉｇ
Ｄａｔａ

Operator Description Example

&& Logical AND a && b

` `

! Logical NOT !a

Operator Description Example

= Assign a = b

+= Add and assign a += b

-= Subtract and assign a -= b

*= Multiply and assign a *= b

/= Divide and assign a /= b

%= Modulus and assign a %= b

3. Logical Operators

Used to combine or invert boolean expressions.

4. Assignment Operators

Used to assign values to variables.

ＡＩ＆Ｂｉｇ
ＤａｔａSpecial Characters

s{} (Curly braces - Used for code blocks)

[] (Square brackets - Used for arrays)

() (Parentheses - Used for functions and expressions)

; (Semicolon - Statement terminator)

: (Colon - Used in labels and ternary operator)

(Hash - Preprocessor directive)

" (Double quotes - String literals)

' (Single quotes - Character literals)

\ (Backslash - Escape sequences)

// (Single-line comment)

/* */ (Multi-line comment)

! (Exclamation mark) NOT operator

ＡＩ＆Ｂｉｇ
ＤａｔａOperator

s

+ (Addition)

- (Subtraction)

* (Multiplication, Asterisk)

/ (Division)

% (Modulus / Remainder)

= (Assignment)

== (Equal to, Comparison)

!= (Not equal to)

> (Greater than)

< (Less than)

>= (Greater than or equal to)

<= (Less than or equal to)

&& (Logical AND)

|| (Logical OR)

! (Logical NOT)

& (Bitwise AND / Address-of operator, Ampersand)

| (Bitwise OR)

^ (Bitwise XOR)

~ (Bitwise Complement)

<< (Left shift)

>> (Right shift)

+= (Addition assignment)

-= (Subtraction assignment)

*= (Multiplication assignment)

/= (Division assignment)

%= (Modulus assignment)

&= (Bitwise AND assignment)

|= (Bitwise OR assignment)

^= (Bitwise XOR assignment)

<<= (Left shift assignment)

>>= (Right shift assignment)

++ (Increment)

-- (Decrement)

-> (Structure pointer access)

. (Structure member access)

?: (Ternary conditional operator)

, (Comma operator)

ＡＩ＆Ｂｉｇ
Ｄａｔａ

m
ir
ic

a
n
v
a
s
.c

o
m

See you next week!
DO NOT miss the classes

